Home
Class 12
MATHS
2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (...

`2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …]` is equal to ,

A

` log ((x)/(x +1))`

B

`log ((x+1)/(x))`

C

`log(2x + 1)`

D

`log ((1)/(2x + 1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \( 2\left[\frac{1}{2x + 1} + \frac{1}{3(2x + 1)^{3}} + \frac{1}{5(2x + 1)^{5}} + \ldots\right] \), we can follow these steps: ### Step 1: Identify the Series The series inside the brackets can be expressed as: \[ S = \frac{1}{2x + 1} + \frac{1}{3(2x + 1)^{3}} + \frac{1}{5(2x + 1)^{5}} + \ldots \] This series can be recognized as a power series involving odd terms. ### Step 2: Relate to Logarithmic Expansion We know the Taylor series expansion for \( \log(1 + x) \): \[ \log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] We can relate our series to this expansion by substituting \( x = \frac{1}{2x + 1} \). ### Step 3: Express the Series in Terms of Logarithms Using the logarithmic expansion, we can express: \[ \log\left(1 + \frac{1}{2x + 1}\right) = \frac{1}{2x + 1} - \frac{1}{2(2x + 1)^2} + \frac{1}{3(2x + 1)^3} - \ldots \] This implies that our series \( S \) can be represented as: \[ S = \log\left(1 + \frac{1}{2x + 1}\right) \] ### Step 4: Simplify the Logarithmic Expression We can rewrite \( \log\left(1 + \frac{1}{2x + 1}\right) \): \[ \log\left(1 + \frac{1}{2x + 1}\right) = \log\left(\frac{2x + 2}{2x + 1}\right) \] ### Step 5: Combine and Simplify Now, substituting back into the original expression: \[ 2S = 2 \log\left(\frac{2x + 2}{2x + 1}\right) = \log\left(\left(\frac{2x + 2}{2x + 1}\right)^2\right) \] This simplifies to: \[ \log\left(\frac{(2x + 2)^2}{(2x + 1)^2}\right) \] ### Step 6: Final Expression Recognizing that \( 2x + 2 = 2(x + 1) \), we can express: \[ \frac{(2(x + 1))^2}{(2x + 1)^2} = \frac{4(x + 1)^2}{(2x + 1)^2} \] Thus, we have: \[ 2S = \log\left(\frac{4(x + 1)^2}{(2x + 1)^2}\right) = \log\left(\frac{4}{1}\right) + 2\log(x + 1) - 2\log(2x + 1) \] ### Step 7: Conclusion The final expression simplifies to: \[ \log\left(\frac{x + 1}{x}\right) \] Thus, we conclude that: \[ f(x) = \log\left(\frac{x + 1}{x}\right) \] ### Final Answer The answer is: \[ \log\left(\frac{x + 1}{x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

int((1)/(5)-(2)/(x^5)+2x)dx is equal to …

lim_(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

(v) 1 2/3 x 1 3/5 is equal to

2((2x)/(x^(2)+1)+(1)/(3)((2x)/(x^(2)+1))^(3) +(1)/(5)((2x)/(x^(2)+1))^(5)+…..oo)=

If l=int((2x-3)^(1/2))/((2x-3)^(1/3)+1)dx=3[(1)/(7)(2x-3)^(7/6)-(1)/(5)(2x-3)^(5/6)+(1)/(3)(2x-3)^(1/2)-(2x-3)^(1/6)+g(x)]+c then g(x) is equal to

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

lim_(x rarr1)(1)/((x-1))((1)/(x+3)-(2)/(3x+5))

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

Prove that : (log)_e((x+1)/x)=2[1/((2x+1))+1/(3(2x+1)^3)+1/(5(2x+1)^5)+]

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |