Home
Class 12
MATHS
If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)...

If `(e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... `, then the value of `B_(n) - B_(n-1)` is

A

`(1)/(n!)`

B

`(1)/((n-1)!)`

C

`(1)/(n!) - (1)/((n -1)!)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \frac{e^x}{1-x} = B_0 + B_1 x + B_2 x^2 + \ldots + B_n x^n + \ldots \] ### Step 1: Rewrite the equation We can multiply both sides of the equation by \(1 - x\): \[ e^x = (1 - x)(B_0 + B_1 x + B_2 x^2 + \ldots) \] ### Step 2: Expand the right-hand side Expanding the right-hand side gives: \[ e^x = B_0(1 - x) + B_1 x(1 - x) + B_2 x^2(1 - x) + \ldots \] This can be simplified to: \[ e^x = B_0 - B_0 x + B_1 x - B_1 x^2 + B_2 x^2 - B_2 x^3 + \ldots \] ### Step 3: Collect like terms Now, we can collect the coefficients of \(x^n\): - The constant term (coefficient of \(x^0\)) is \(B_0\). - The coefficient of \(x\) is \(B_1 - B_0\). - The coefficient of \(x^2\) is \(B_2 - B_1\). - The coefficient of \(x^3\) is \(B_3 - B_2\). - In general, the coefficient of \(x^n\) is \(B_n - B_{n-1}\). ### Step 4: Compare with the series expansion of \(e^x\) The series expansion of \(e^x\) is: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 5: Equate coefficients Now we can equate the coefficients from both sides: 1. From the constant term: \[ B_0 = 1 \] 2. From the coefficient of \(x\): \[ B_1 - B_0 = 1 \implies B_1 - 1 = 1 \implies B_1 = 2 \] 3. From the coefficient of \(x^2\): \[ B_2 - B_1 = \frac{1}{2!} \implies B_2 - 2 = \frac{1}{2} \implies B_2 = 2.5 \] 4. From the coefficient of \(x^3\): \[ B_3 - B_2 = \frac{1}{3!} \implies B_3 - 2.5 = \frac{1}{6} \implies B_3 = 2.5 + \frac{1}{6} \] ### Step 6: Generalize the formula Continuing this process, we find that: \[ B_n - B_{n-1} = \frac{1}{n!} \] ### Conclusion Thus, the value of \(B_n - B_{n-1}\) is: \[ \boxed{\frac{1}{n!}} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - C) More than one option are correct|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A) One option is correct|60 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a_0+a_1x+a_2x^2+...+a_n x^n and (f(x))/(1-x)=b_0+b_1x+b_2x^2+...+b_n x^n , then a. b_n+b_(n-1)=a_n b. b_n-b_(n-1)=a_n c. b_n/b_(n-1)=a_n d. none of these

if int (1+x^n)^(1/n)/x^(n+2)dx = a(1+1/x^4)^b+c then value of a+b=

If A and B are coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) respectively, then find the value of (A)/(B) .

If A and B are coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) respectively, then find the value of (A)/(B) .

If |(x^n ,x^(n+2), x^(2n)),(1, x^a, a), (x^(n+5), x^(a+6), x^(2n+5))|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

If ("lim")_(xvecoo){(x^2+1)/(x+1)-(a x+b)}=0, then find the value of aa n dbdot

lim_(x to 0) (1+ax)^(b/x) =e^(2) , " where" a, b in N such that a+ b = 3 , then the value of (a,b) is

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If f(x) = (a-x^n)^(1/n) then fof(x) is (A) x (B) a-x (C) x^2 (D) -1/x^n

AAKASH INSTITUTE ENGLISH-SEQUENCES AND SERIES -Assignment (SECTION - B) One option is correct
  1. If 1,log9(3^(1-x)+2), log3(4*3^x-1) are in A.P then x equals to

    Text Solution

    |

  2. If b-c, 2b-x and b-a are in H.P., then a-(x/2), b-(x/2) and c-(x/2) ar...

    Text Solution

    |

  3. Let log(2) 3 = alpha , then log(64) 729 is

    Text Solution

    |

  4. sum(n=1)^(oo) (""^(n)C(0) + ""^(n)C(1) + .......""^(n)C(n))/(n!) is eq...

    Text Solution

    |

  5. sum(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. The coefficient of x^(4) "in" (1 - 3x + x^(2))/(e^(x)) equals

    Text Solution

    |

  8. The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo ...

    Text Solution

    |

  9. the value of 2/(1!)+ (2+4)/(2!) + (2+4+6)/(3!) +.................. ...

    Text Solution

    |

  10. ((1 )/(2!) + (1)/(4!) + (1)/(6!) + ......)/((1)/(1!) + (1)/(3!) + (1)/...

    Text Solution

    |

  11. The sum of the series (a + b ) (a - b) + (a + b)(a-b)(a^(2) + b^(2)...

    Text Solution

    |

  12. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  13. The sum of the series 1/1.2-1/2.3+1/3.4-1/4.5+ ... is

    Text Solution

    |

  14. sum(n=0)^(oo) (n^(2) + n + 1)/((n +1)!) is equal to

    Text Solution

    |

  15. If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2...

    Text Solution

    |

  16. If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))...

    Text Solution

    |

  17. The numbers log(180) 12, log(2160) 12, log(25920) 12 are in

    Text Solution

    |

  18. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. The value of x, log(1/2)x >= log(1/3)x is

    Text Solution

    |