Home
Class 12
MATHS
If cos (theta - alpha),cos(theta),Cos(th...

If `cos (theta - alpha),cos(theta),Cos(theta + alpha)` are in H.P. and ` cos alpha ne 1`, then angle `alpha` lie in the

A

II quadrant

B

III quadrant

C

I quadrant

D

IV quadrant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the quadrant in which the angle α lies, given that \( \cos(\theta - \alpha), \cos(\theta), \cos(\theta + \alpha) \) are in Harmonic Progression (H.P.) and \( \cos \alpha \neq 1 \). ### Step-by-Step Solution: 1. **Understanding H.P.**: If three numbers \( a, b, c \) are in H.P., then their reciprocals \( \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \) are in Arithmetic Progression (A.P.). Therefore, we can write: \[ \frac{1}{\cos(\theta - \alpha)}, \frac{1}{\cos(\theta)}, \frac{1}{\cos(\theta + \alpha)} \] are in A.P. 2. **Setting Up the A.P. Condition**: For three terms to be in A.P., the condition is: \[ 2 \cdot \frac{1}{\cos(\theta)} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)} \] 3. **Cross-Multiplying**: This leads to: \[ 2 \cos(\theta - \alpha) \cos(\theta + \alpha) = \cos(\theta) \left( \cos(\theta + \alpha) + \cos(\theta - \alpha) \right) \] 4. **Using the Cosine Addition Formula**: The right-hand side can be simplified using the cosine addition formula: \[ \cos(\theta + \alpha) + \cos(\theta - \alpha) = 2 \cos(\theta) \cos(\alpha) \] Thus, we have: \[ 2 \cos(\theta - \alpha) \cos(\theta + \alpha) = 2 \cos^2(\theta) \cos(\alpha) \] 5. **Simplifying the Equation**: Dividing both sides by 2 (assuming \( \cos(\theta) \neq 0 \)): \[ \cos(\theta - \alpha) \cos(\theta + \alpha) = \cos^2(\theta) \cos(\alpha) \] 6. **Using the Product-to-Sum Formula**: The left-hand side can be expressed as: \[ \frac{1}{2} \left( \cos(2\theta) + \cos(2\alpha) \right) \] Thus, we have: \[ \frac{1}{2} \left( \cos(2\theta) + \cos(2\alpha) \right) = \cos^2(\theta) \cos(\alpha) \] 7. **Rearranging the Equation**: Rearranging gives: \[ \cos(2\theta) + \cos(2\alpha) = 2 \cos^2(\theta) \cos(\alpha) \] 8. **Analyzing the Range of \( \cos(\alpha) \)**: We know that \( \cos(\alpha) \) must be in the range that satisfies \( \cos(\alpha) \neq 1 \). Since \( \cos(\alpha) \) is negative, we can conclude that: \[ -1 < \cos(\alpha) < 0 \] 9. **Determining the Quadrant**: The cosine function is negative in the second and third quadrants. Therefore, angle \( \alpha \) must lie in either the second quadrant (90° to 180°) or the third quadrant (180° to 270°). ### Conclusion: The angle \( \alpha \) lies in the **second and third quadrants**.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - E) Assertion-Reason|12 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - B) One option is correct|49 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If cos(theta-alpha),cos(theta),cos(theta+alpha) are in H.P. then costheta.secalpha/2

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha/2) =

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha)/2 =

If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P.,then costhetasec(alpha//2) is equal to

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

If sin (theta + alpha ) = cos ( theta + alpha), prove that tan theta =(1- tan alpha )/(1 + tan alpha )

If cos^4 theta sec^2 alpha,1/2 and sin^4 theta cosec^2 alpha are in A.P. , then cos^8 theta sec^6 alpha ,1/2 and sin^8 theta cosec^6 alpha are

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

Show that the lines (1-cos theta tan alpha) y^2 -(2cos theta+sin ^2 theta tan alpha )xy +cos theta (cos theta+tan alpha )x^2=0 include an angle alpha between them .

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)