Home
Class 12
MATHS
Q. If logx a, a^(x/2) and logb x are in ...

Q. If `log_x a, a^(x/2)` and `log_b x` are in G.P. then x is equal to (1) `log_a(log_b a)` (2) `log_a(log_e a)+log_a log_b b` (3)`-log_a(log_a b)` (4) none of these

A

`log_(a) (log_(b) a)`

B

`log_(a) (log_(e)a) - log_(a) (log_(e) b)`

C

`-log_(a) (log_(a) b)`

D

`log_(a) (log_(e) b) - log_(a) (log_(e) a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( x \) given that \( \log_x a \), \( a^{(x/2)} \), and \( \log_b x \) are in geometric progression (G.P.). ### Step-by-Step Solution: 1. **Understanding G.P. Condition**: For three terms \( A, B, C \) to be in G.P., the condition is: \[ B^2 = A \cdot C \] Here, let \( A = \log_x a \), \( B = a^{(x/2)} \), and \( C = \log_b x \). 2. **Setting up the Equation**: According to the G.P. condition: \[ (a^{(x/2)})^2 = \log_x a \cdot \log_b x \] This simplifies to: \[ a^x = \log_x a \cdot \log_b x \] 3. **Using Logarithm Properties**: We can express \( \log_x a \) using the change of base formula: \[ \log_x a = \frac{\log_e a}{\log_e x} \] and \( \log_b x \) as: \[ \log_b x = \frac{\log_e x}{\log_e b} \] Substituting these into our equation gives: \[ a^x = \left(\frac{\log_e a}{\log_e x}\right) \cdot \left(\frac{\log_e x}{\log_e b}\right) \] This simplifies to: \[ a^x = \frac{\log_e a}{\log_e b} \] 4. **Taking Logarithm on Both Sides**: Taking the logarithm of both sides, we have: \[ \log_e(a^x) = \log_e\left(\frac{\log_e a}{\log_e b}\right) \] Using the property of logarithms, this becomes: \[ x \log_e a = \log_e(\log_e a) - \log_e(\log_e b) \] 5. **Solving for \( x \)**: Rearranging gives: \[ x = \frac{\log_e(\log_e a) - \log_e(\log_e b)}{\log_e a} \] This can be rewritten using the change of base formula: \[ x = \log_a\left(\frac{\log_e a}{\log_e b}\right) \] This is equivalent to: \[ x = \log_a(\log_b a) \] ### Conclusion: Thus, the value of \( x \) is: \[ x = \log_a(\log_b a) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - E) Assertion-Reason|12 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - B) One option is correct|49 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If log_(x)a, a^(x//2), log_(b)x are in G.P. then x is equal to

If (log)_x a ,\ a^(x//2) and (log)_b x are in G.P., then write the value of xdot

If log_a x, log_b x, log_c x are in A.P then c^2=

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

1/(1+log_b a+log_b c)+1/(1+log_c a+log_c b)+1/(1+log_a b+log_a c)

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

(a^(log_b x))^2-5x^(log_b a)+6=0

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

If log_b x=p and log_b y=q, then log_b xy=

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .