Home
Class 12
MATHS
The equation (log(x) 10)^(3) -(log(x) ...

The equation `(log_(x) 10)^(3) -(log_(x) 10)^(2) - 6 log_(x) 10 = 0 ` is
satisfied by a value of `x` given by

A

`root(3)(10)`

B

`(1)/(sqrt(10))`

C

`sqrt(10)`

D

`(1)/(root(3)(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\log_{x} 10)^{3} - (\log_{x} 10)^{2} - 6 \log_{x} 10 = 0\), we will follow these steps: ### Step 1: Substitute the logarithm Let \( a = \log_{x} 10 \). Then, the equation can be rewritten as: \[ a^{3} - a^{2} - 6a = 0 \] ### Step 2: Factor out \( a \) We can factor out \( a \) from the equation: \[ a(a^{2} - a - 6) = 0 \] This gives us two cases to consider: \( a = 0 \) or \( a^{2} - a - 6 = 0 \). ### Step 3: Solve the quadratic equation Now, we will solve the quadratic equation \( a^{2} - a - 6 = 0 \) using the middle-term splitting method: \[ a^{2} - 3a + 2a - 6 = 0 \] Grouping the terms, we have: \[ a(a - 3) + 2(a - 3) = 0 \] Factoring gives: \[ (a - 3)(a + 2) = 0 \] Thus, we have two solutions for \( a \): \[ a - 3 = 0 \quad \Rightarrow \quad a = 3 \] \[ a + 2 = 0 \quad \Rightarrow \quad a = -2 \] ### Step 4: Convert back to logarithmic form Now, we will convert back to logarithmic form for both values of \( a \). 1. For \( a = 3 \): \[ \log_{x} 10 = 3 \quad \Rightarrow \quad \frac{\log 10}{\log x} = 3 \] This implies: \[ \log 10 = 3 \log x \quad \Rightarrow \quad \log 10 = \log x^{3} \] Taking the antilogarithm: \[ 10 = x^{3} \quad \Rightarrow \quad x = 10^{1/3} \] 2. For \( a = -2 \): \[ \log_{x} 10 = -2 \quad \Rightarrow \quad \frac{\log 10}{\log x} = -2 \] This implies: \[ \log 10 = -2 \log x \quad \Rightarrow \quad \log 10 = \log x^{-2} \] Taking the antilogarithm: \[ 10 = x^{-2} \quad \Rightarrow \quad x^{2} = \frac{1}{10} \quad \Rightarrow \quad x = 10^{-1/2} = \frac{1}{\sqrt{10}} \] ### Final Solutions The values of \( x \) that satisfy the original equation are: \[ x = 10^{1/3} \quad \text{and} \quad x = \frac{1}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) Linked Comprehension|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - E) Assertion-Reason|12 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - B) One option is correct|49 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

The domain of definition of f(x)=log_(10) log_(10)…..log_(10)x n times, is

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If log_(10) (x^3+y^3)-log_(10) (x^2+y^2-xy) =0, y>=0 is