Home
Class 12
MATHS
STATEMENT-1 : If 1^(2) - 2^(2) + 3^(2) …...

STATEMENT-1 : If `1^(2) - 2^(2) + 3^(2) …….."to" 21 ` terms is 231
STATEMENT-2 : If ` 1^(3) - 2^(3) + 3^(3) - 4^(5) ………..` to 15 terms is 1856
STATEMENT-3 : If ` 1^(1) + 3^(2) + 5^(2) ……..` to 8 terms is 689

A

F T F

B

T T F

C

T T T

D

F F T

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement one by one, verifying their correctness through calculations. ### Statement 1: **Claim:** The sum \(1^2 - 2^2 + 3^2 - 4^2 + \ldots\) up to 21 terms equals 231. **Solution:** 1. **Identify the pattern:** The series alternates between positive and negative squares. We can group the terms: \[ S = (1^2) + (-2^2) + (3^2) + (-4^2) + \ldots + (21^2) \] This can be rewritten as: \[ S = (1^2 + 3^2 + 5^2 + \ldots + 21^2) - (2^2 + 4^2 + 6^2 + \ldots + 20^2) \] 2. **Calculate the sum of squares of odd numbers (up to 21):** The sum of squares of the first \(n\) odd numbers is given by: \[ \text{Sum of odd squares} = \frac{n(2n - 1)(2n + 1)}{3} \] Here, \(n = 11\) (since there are 11 odd numbers from 1 to 21): \[ \text{Sum of odd squares} = \frac{11(22)(23)}{3} = \frac{11 \times 506}{3} = 1852 \] 3. **Calculate the sum of squares of even numbers (up to 20):** The sum of squares of the first \(n\) even numbers is given by: \[ \text{Sum of even squares} = 2^2 \cdot \frac{n(n + 1)(2n + 1)}{6} \] Here, \(n = 10\): \[ \text{Sum of even squares} = 4 \cdot \frac{10(11)(21)}{6} = 4 \cdot 385 = 1540 \] 4. **Combine the results:** \[ S = 1852 - 1540 = 312 \] Since \(312 \neq 231\), **Statement 1 is false.** ### Statement 2: **Claim:** The sum \(1^3 - 2^3 + 3^3 - 4^3 + \ldots\) up to 15 terms equals 1856. **Solution:** 1. **Identify the pattern:** The series can be grouped similarly: \[ S = (1^3 + 3^3 + 5^3 + \ldots + 15^3) - (2^3 + 4^3 + 6^3 + \ldots + 14^3) \] 2. **Calculate the sum of cubes of odd numbers (up to 15):** The sum of cubes of the first \(n\) odd numbers is given by: \[ \left(\frac{n(2n - 1)(2n + 1)}{3}\right)^2 \] Here, \(n = 8\): \[ \text{Sum of odd cubes} = \left(\frac{8(15)(17)}{3}\right)^2 = \left(680\right)^2 = 462400 \] 3. **Calculate the sum of cubes of even numbers (up to 14):** The sum of cubes of the first \(n\) even numbers is given by: \[ \left(\frac{n(n + 1)}{2}\right)^2 \] Here, \(n = 7\): \[ \text{Sum of even cubes} = \left(\frac{7(8)}{2}\right)^2 = 784 \] 4. **Combine the results:** \[ S = 462400 - 784 = 461616 \] Since \(461616 \neq 1856\), **Statement 2 is false.** ### Statement 3: **Claim:** The sum \(1^2 + 3^2 + 5^2 + \ldots\) up to 8 terms equals 689. **Solution:** 1. **Identify the pattern:** The series consists of the squares of the first 8 odd numbers: \[ S = 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 + 13^2 + 15^2 \] 2. **Calculate the sum of squares of odd numbers:** Using the formula for the sum of squares of the first \(n\) odd numbers: \[ S = \frac{n(2n - 1)(2n + 1)}{3} \] Here, \(n = 8\): \[ S = \frac{8(15)(17)}{3} = \frac{2040}{3} = 680 \] 3. **Since \(680 \neq 689\), Statement 3 is false.** ### Conclusion: - **Statement 1:** False - **Statement 2:** False - **Statement 3:** False
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - I) Subjective|10 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - G) Integer|6 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

1/(1.2)+1/(2.3)+1/(3.4)+... to n terms

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Sum of first 20 terms of 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) +... upto 20 terms is :

(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is :

Sum to n terms of the series 1^(3) - (1.5)^(3) +2^(3)-(2.5)^(3) +…. is

Sum to n terms the series 1 + (1+ 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4).......

The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))... upto 10th term is

If (a)/(2)-(b)/(3)=1 , what is 2a+3b in terms of b?

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

The sum of the first 9 terms of the series 1^3/1 + (1^3 + 2^3)/(1+3) + (1^3 + 2^3 +3^3)/(1 + 3 +5) ..... is :