Home
Class 12
MATHS
The value of sum(n=1)^oo\ (n^2+1)/((n+2)...

The value of `sum_(n=1)^oo\ (n^2+1)/((n+2)n!)` is

A

` 9 - e`

B

`(9)/(2) - e `

C

`(9)/(2) + e`

D

` 9 + e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series: \[ S = \sum_{n=1}^{\infty} \frac{n^2 + 1}{(n + 2)n!} \] ### Step 1: Rewrite the numerator We can express \( n^2 + 1 \) in a more manageable form. Notice that: \[ n^2 + 1 = (n + 2)(n - 2) + 5 \] So, we can rewrite the series as: \[ S = \sum_{n=1}^{\infty} \frac{(n + 2)(n - 2) + 5}{(n + 2)n!} \] ### Step 2: Split the series Now, we can split the series into two parts: \[ S = \sum_{n=1}^{\infty} \frac{(n - 2)}{n!} + \sum_{n=1}^{\infty} \frac{5}{(n + 2)n!} \] ### Step 3: Simplify the first part The first part can be simplified as follows: \[ \sum_{n=1}^{\infty} \frac{(n - 2)}{n!} = \sum_{n=1}^{\infty} \frac{n}{n!} - 2\sum_{n=1}^{\infty} \frac{1}{n!} \] Using the fact that: \[ \sum_{n=1}^{\infty} \frac{n}{n!} = e \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{1}{n!} = e \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1 \] Thus, \[ \sum_{n=1}^{\infty} \frac{(n - 2)}{n!} = e - 2(e - 1) = e - 2e + 2 = 2 - e \] ### Step 4: Simplify the second part Now, we simplify the second part: \[ \sum_{n=1}^{\infty} \frac{5}{(n + 2)n!} = 5 \sum_{n=1}^{\infty} \frac{1}{(n + 2)!} \] This can be rewritten as: \[ 5 \sum_{m=3}^{\infty} \frac{1}{m!} = 5 \left( \sum_{m=0}^{\infty} \frac{1}{m!} - \frac{1}{0!} - \frac{1}{1!} - \frac{1}{2!} \right) \] Calculating this gives: \[ = 5 \left( e - 1 - 1 - \frac{1}{2} \right) = 5 \left( e - 2 - \frac{1}{2} \right) = 5 \left( e - \frac{5}{2} \right) \] ### Step 5: Combine the results Now we can combine both parts to find \( S \): \[ S = (2 - e) + 5 \left( e - \frac{5}{2} \right) \] Expanding this gives: \[ S = 2 - e + 5e - \frac{25}{2} = 2 + 4e - \frac{25}{2} \] Combining the constants: \[ S = 4e - \frac{21}{2} \] ### Final Result Thus, the value of the series is: \[ S = \frac{9}{2} - e \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - I) Subjective|10 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1) ^(oo) (1)/((2n-1)!)=

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

The value of lim_(n->oo) n^(1/n)

The value of the sum_(n=0)^oo(2n+3)/(3^n) is equal to_________.

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :