Home
Class 12
MATHS
The sum S(n) where T(n) = (-1)^(n) (n^(...

The sum `S_(n)` where `T_(n) = (-1)^(n) (n^(2) + n +1)/( n!) ` is

A

`((-1)^(n))/(n-1!)-((-1)^(n))/(n+1)!)`

B

`[((-1)^(n))/(n!) - ((-1)^(n))/(n-1!)]-1`

C

`[((-1)^(n +1))/(n+1!) - ((-1)^(n-1))/((n-1)!)]`

D

`[((-1)^(n))/(n!) -((-1)^(n-1))/(( n-1)!)] -1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S_n \) where \( T_n = \frac{(-1)^n (n^2 + n + 1)}{n!} \), we will follow these steps: ### Step 1: Define the Sum We start with the sum \( S_n \): \[ S_n = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} \frac{(-1)^r (r^2 + r + 1)}{r!} \] ### Step 2: Separate the Terms We can separate the terms in the summation: \[ S_n = \sum_{r=1}^{n} \frac{(-1)^r r^2}{r!} + \sum_{r=1}^{n} \frac{(-1)^r r}{r!} + \sum_{r=1}^{n} \frac{(-1)^r}{r!} \] ### Step 3: Simplify Each Summation We will simplify each of the three summations individually. 1. **For the first term**: \[ \sum_{r=1}^{n} \frac{(-1)^r r^2}{r!} = \sum_{r=1}^{n} \frac{(-1)^r r}{(r-1)!} = \sum_{r=1}^{n} \frac{(-1)^r r}{r!} + \sum_{r=1}^{n} \frac{(-1)^r}{(r-1)!} \] 2. **For the second term**: \[ \sum_{r=1}^{n} \frac{(-1)^r r}{r!} = -\sum_{r=0}^{n} \frac{(-1)^r}{(r-1)!} = -\sum_{r=0}^{n} \frac{(-1)^r}{r!} \] 3. **For the third term**: \[ \sum_{r=1}^{n} \frac{(-1)^r}{r!} \] ### Step 4: Combine the Results Now we combine the results of the three summations: \[ S_n = \sum_{r=1}^{n} \frac{(-1)^r r^2}{r!} + \sum_{r=1}^{n} \frac{(-1)^r r}{r!} + \sum_{r=1}^{n} \frac{(-1)^r}{r!} \] ### Step 5: Evaluate the Series Using the known series expansions: - The series for \( e^{-x} \) gives us: \[ \sum_{r=0}^{\infty} \frac{(-1)^r}{r!} = e^{-1} \] Thus, we can evaluate the sums and find: \[ S_n = -\frac{(-1)^n}{n!} + \frac{(-1)^{n-1}}{(n-1)!} - \frac{(-1)^n}{n!} \] ### Step 6: Final Result After simplifying, we find: \[ S_n = \frac{(-1)^{n-1}}{(n-1)!} - \frac{(-1)^n}{n!} \] ### Conclusion Thus, the sum \( S_n \) is: \[ S_n = \frac{(-1)^{n-1}}{(n-1)!} - \frac{(-1)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - I) Subjective|10 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|8 Videos
  • SETS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I(Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^(oo) (2n)/(n!)=

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If (1 ^(2) - t _(1)) + (2 ^(2) - t _(2)) + ......+ ( n ^(2) - t _(n)) =(1)/(3) n ( n ^(2) -1 ), then t _(n) is

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

Let S _(n ) = sum _( k =0) ^(n) (1)/( sqrt ( k +1) + sqrt k) What is the value of sum _( n =1) ^( 99) (1)/( S _(n ) + S _( n -1)) ?=