Home
Class 12
MATHS
Let f : [2, 4) rarr [1, 3) be a function...

Let `f : [2, 4) rarr [1, 3)` be a function defined by `f(x) = x - [(x)/(2)]` (where [.] denotes the greatest integer function). Then `f^(-1)` equals

A

x

B

x+1

C

`x + [(x)/(2)]`

D

x+2

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f : [2, 4) \to [1, 3) \) defined by \( f(x) = x - \left\lfloor \frac{x}{2} \right\rfloor \), we will follow these steps: ### Step 1: Understand the function The function \( f(x) = x - \left\lfloor \frac{x}{2} \right\rfloor \) involves the greatest integer function, which means we need to evaluate how \( \left\lfloor \frac{x}{2} \right\rfloor \) behaves in the interval \( [2, 4) \). ### Step 2: Evaluate \( \left\lfloor \frac{x}{2} \right\rfloor \) for the domain - For \( x \) in the interval \( [2, 4) \): - If \( x = 2 \), then \( \frac{2}{2} = 1 \) and \( \left\lfloor 1 \right\rfloor = 1 \). - If \( x = 3 \), then \( \frac{3}{2} = 1.5 \) and \( \left\lfloor 1.5 \right\rfloor = 1 \). - If \( x \) approaches \( 4 \) (but is less than \( 4 \)), \( \frac{4}{2} = 2 \) and \( \left\lfloor 2 \right\rfloor = 2 \). Thus, for \( x \) in \( [2, 4) \): - \( \left\lfloor \frac{x}{2} \right\rfloor = 1 \) for \( x \in [2, 4) \) except at \( x = 4 \) where it would be \( 2 \). ### Step 3: Simplify \( f(x) \) Since \( \left\lfloor \frac{x}{2} \right\rfloor = 1 \) for \( x \in [2, 4) \): \[ f(x) = x - 1 \] This means that \( f(x) \) maps \( [2, 4) \) to \( [1, 3) \). ### Step 4: Find the inverse function To find the inverse, we set \( y = f(x) \): \[ y = x - 1 \] Solving for \( x \): \[ x = y + 1 \] Thus, the inverse function is: \[ f^{-1}(y) = y + 1 \] ### Step 5: Replace \( y \) with \( x \) in the inverse function To express the inverse function in standard form: \[ f^{-1}(x) = x + 1 \] ### Conclusion The inverse function \( f^{-1} \) is: \[ f^{-1}(x) = x + 1 \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The function defined by f(x) =(-1)^([x^(3)]) ([.] denotes the greatest integer function ) satidfies

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. Let A = {1, 2, 3}, B = {a, b, c}, C {a(1), b(1), c(1), d(1), e(1)} an...

    Text Solution

    |

  2. Select the correct match

    Text Solution

    |

  3. Let f : [2, 4) rarr [1, 3) be a function defined by f(x) = x - [(x)/(2...

    Text Solution

    |

  4. Identify the correct option

    Text Solution

    |

  5. Which of the following function is an even function ?

    Text Solution

    |

  6. A function f(x) given by f(x)={{:(x^(2)sin""(pix)/(2), |x| lt1),(x|...

    Text Solution

    |

  7. Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0. Then f(x)...

    Text Solution

    |

  8. Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R a...

    Text Solution

    |

  9. Let f: R rarr R be a function defined as f(x)=[(x+1)^2]^(1/3)+[(x-1)^2...

    Text Solution

    |

  10. Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2...

    Text Solution

    |

  11. Identify the incorrect statement

    Text Solution

    |

  12. Let f(x)=x^2 and g(x)=2^x . Then the solution set of the equation fo...

    Text Solution

    |

  13. Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)...

    Text Solution

    |

  14. Let g(x) be a polynomial function satisfying g(x).g(y) = g(x) + g(y) +...

    Text Solution

    |

  15. If the functions f, g and h are defined from the set of real numbers R...

    Text Solution

    |

  16. Range ofthe function f(x)=cos(Ksin x) is [-1,1], then the least positi...

    Text Solution

    |

  17. Consider that the graph of y = f(x) is symmetrie about the lines x =...

    Text Solution

    |

  18. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  19. If f(x) = 4^(x) - 2^(x + 1) + 5, then range of f(x) is

    Text Solution

    |

  20. Let g be a real valued function defined on the interval (-1, 1) such t...

    Text Solution

    |