Home
Class 12
MATHS
Let f: R rarr R be a function defined as...

Let `f: R rarr R` be a function defined as `f(x)=[(x+1)^2]^(1/3)+[(x-1)^2]^(1/3)+x/(2^x-1)+x/2+1`

A

Even

B

Odd

C

Neither even nor odd

D

Both even and odd

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \left( (x+1)^2 \right)^{1/3} + \left( (x-1)^2 \right)^{1/3} + \frac{x}{2^x - 1} + \frac{x}{2} + 1 \) is even, odd, or neither, we need to evaluate \( f(-x) \) and compare it with \( f(x) \) and \( -f(x) \). ### Step 1: Calculate \( f(-x) \) Substituting \( -x \) into the function: \[ f(-x) = \left( (-x + 1)^2 \right)^{1/3} + \left( (-x - 1)^2 \right)^{1/3} + \frac{-x}{2^{-x} - 1} + \frac{-x}{2} + 1 \] ### Step 2: Simplify \( f(-x) \) Now we simplify each term: 1. **First term**: \[ (-x + 1)^2 = (1 - x)^2 \implies \left( (1 - x)^2 \right)^{1/3} \] 2. **Second term**: \[ (-x - 1)^2 = (-1 - x)^2 = (x + 1)^2 \implies \left( (x + 1)^2 \right)^{1/3} \] 3. **Third term**: \[ \frac{-x}{2^{-x} - 1} = \frac{-x}{\frac{1}{2^x} - 1} = \frac{-x \cdot 2^x}{1 - 2^x} \] 4. **Fourth term**: \[ \frac{-x}{2} \] Putting it all together, we have: \[ f(-x) = \left( (1 - x)^2 \right)^{1/3} + \left( (x + 1)^2 \right)^{1/3} + \frac{-x \cdot 2^x}{1 - 2^x} - \frac{x}{2} + 1 \] ### Step 3: Compare \( f(-x) \) with \( f(x) \) Now we need to compare \( f(-x) \) with \( f(x) \): 1. **First term in \( f(x) \)**: \[ \left( (x + 1)^2 \right)^{1/3} \] 2. **Second term in \( f(x) \)**: \[ \left( (x - 1)^2 \right)^{1/3} \] 3. **Third term in \( f(x) \)**: \[ \frac{x}{2^x - 1} \] 4. **Fourth term in \( f(x) \)**: \[ \frac{x}{2} \] 5. **Constant term**: \[ 1 \] ### Step 4: Check if \( f(-x) = f(x) \) or \( f(-x) = -f(x) \) After simplifying \( f(-x) \), we can see that: - The first term \( (1 - x)^2 \) does not equal \( (x + 1)^2 \). - The second term \( (x + 1)^2 \) does not equal \( (x - 1)^2 \). - The third term \( \frac{-x \cdot 2^x}{1 - 2^x} \) does not equal \( \frac{x}{2^x - 1} \). - The fourth term \( -\frac{x}{2} \) does not equal \( \frac{x}{2} \). Thus, \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \). ### Conclusion Since \( f(-x) \) is neither equal to \( f(x) \) nor equal to \( -f(x) \), we conclude that the function \( f(x) \) is neither even nor odd.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

The function f:R→R defined by f(x)=(x−1)(x−2)(x−3) is

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){-5}

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){26}

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

Let f : R − { − 3, 5 } → R be a function defined as f ( x ) = (2x)/(5x+3) . Write f^(−1)

Let f:R to R be the function defined by f(x)=2x-3, AA x in R. Write f^(-1).

Let f: R->R be defined as f(x)=x^2+1 . Find: f^(-1)(10)

Let f: R->R be a function given by f(x)=x^2+1. Find: f^(-1){10 , 37}

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. Let f(x+y) + f(x-y) = 2f(x)f(y) for x, y in R and f(0) != 0. Then f(x)...

    Text Solution

    |

  2. Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R a...

    Text Solution

    |

  3. Let f: R rarr R be a function defined as f(x)=[(x+1)^2]^(1/3)+[(x-1)^2...

    Text Solution

    |

  4. Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2...

    Text Solution

    |

  5. Identify the incorrect statement

    Text Solution

    |

  6. Let f(x)=x^2 and g(x)=2^x . Then the solution set of the equation fo...

    Text Solution

    |

  7. Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)...

    Text Solution

    |

  8. Let g(x) be a polynomial function satisfying g(x).g(y) = g(x) + g(y) +...

    Text Solution

    |

  9. If the functions f, g and h are defined from the set of real numbers R...

    Text Solution

    |

  10. Range ofthe function f(x)=cos(Ksin x) is [-1,1], then the least positi...

    Text Solution

    |

  11. Consider that the graph of y = f(x) is symmetrie about the lines x =...

    Text Solution

    |

  12. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  13. If f(x) = 4^(x) - 2^(x + 1) + 5, then range of f(x) is

    Text Solution

    |

  14. Let g be a real valued function defined on the interval (-1, 1) such t...

    Text Solution

    |

  15. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  16. if f(x) is a real valued function defined as f(x)={min{|x|,1/x^2,1/x^3...

    Text Solution

    |

  17. Select the correct option

    Text Solution

    |

  18. Let f(x) = [x]^(2) + [x+1] - 3, where [.] denotes the greatest integer...

    Text Solution

    |

  19. If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x...

    Text Solution

    |

  20. If tan ax + cot ax and |tan x| + |cot x| are periodic functions of th...

    Text Solution

    |