Home
Class 12
MATHS
Let f(x) = tan x, x in (-pi/2,pi/2)and g...

Let `f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2)` then `g(f(x))` is

A

`((sqrt(cos 2x)))/(cosx)`

B

`-((sqrt(cos 2x)))/(cosx)`

C

`((sqrt(cos 2x)))/(|cosx|)`

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g(f(x)) \) where \( f(x) = \tan x \) and \( g(x) = \sqrt{1 - x^2} \), we will follow these steps: ### Step 1: Write down the functions We have: - \( f(x) = \tan x \) - \( g(x) = \sqrt{1 - x^2} \) ### Step 2: Substitute \( f(x) \) into \( g(x) \) We need to find \( g(f(x)) \): \[ g(f(x)) = g(\tan x) = \sqrt{1 - (\tan x)^2} \] ### Step 3: Simplify \( 1 - (\tan x)^2 \) Using the identity \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \), we can rewrite: \[ 1 - \tan^2 x = 1 - \frac{\sin^2 x}{\cos^2 x} \] To combine these terms, we find a common denominator: \[ 1 - \tan^2 x = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} \] ### Step 4: Recognize the numerator as a trigonometric identity The expression \( \cos^2 x - \sin^2 x \) can be rewritten using the double angle identity: \[ \cos^2 x - \sin^2 x = \cos 2x \] Thus, we have: \[ 1 - \tan^2 x = \frac{\cos 2x}{\cos^2 x} \] ### Step 5: Substitute back into \( g(f(x)) \) Now substituting back into our expression for \( g(f(x)) \): \[ g(f(x)) = \sqrt{1 - \tan^2 x} = \sqrt{\frac{\cos 2x}{\cos^2 x}} \] ### Step 6: Simplify the square root We can simplify this further: \[ g(f(x)) = \frac{\sqrt{\cos 2x}}{\cos x} \] ### Step 7: Determine the sign of \( \cos x \) Since \( x \) is in the interval \( (-\frac{\pi}{2}, \frac{\pi}{2}) \), \( \cos x \) is always positive in this range. Therefore, we can drop the absolute value: \[ g(f(x)) = \frac{\sqrt{\cos 2x}}{\cos x} \] ### Final Result Thus, the final result for \( g(f(x)) \) is: \[ g(f(x)) = \frac{\sqrt{\cos 2x}}{\cos x} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Define fog(x) and gof(x). Also find their domain and range. f(x) = tan x, x in (-pi/2, pi/2); g(x) = sqrt(1-x^2)

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Let f (x) =x + sqrt(x^(2) +2x) and g (x) = sqrt(x^(2) +2x)-x, then:

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. If int _(0)^(2pi)g (x) dx = api ^(2) + beta pi+ gamma, where alpha, beta and gamma in R, then find the value of 2 (alpha + beta+ gamma).

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. Identify the incorrect statement

    Text Solution

    |

  2. Let f(x)=x^2 and g(x)=2^x . Then the solution set of the equation fo...

    Text Solution

    |

  3. Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)...

    Text Solution

    |

  4. Let g(x) be a polynomial function satisfying g(x).g(y) = g(x) + g(y) +...

    Text Solution

    |

  5. If the functions f, g and h are defined from the set of real numbers R...

    Text Solution

    |

  6. Range ofthe function f(x)=cos(Ksin x) is [-1,1], then the least positi...

    Text Solution

    |

  7. Consider that the graph of y = f(x) is symmetrie about the lines x =...

    Text Solution

    |

  8. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  9. If f(x) = 4^(x) - 2^(x + 1) + 5, then range of f(x) is

    Text Solution

    |

  10. Let g be a real valued function defined on the interval (-1, 1) such t...

    Text Solution

    |

  11. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  12. if f(x) is a real valued function defined as f(x)={min{|x|,1/x^2,1/x^3...

    Text Solution

    |

  13. Select the correct option

    Text Solution

    |

  14. Let f(x) = [x]^(2) + [x+1] - 3, where [.] denotes the greatest integer...

    Text Solution

    |

  15. If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x...

    Text Solution

    |

  16. If tan ax + cot ax and |tan x| + |cot x| are periodic functions of th...

    Text Solution

    |

  17. If {x} and [x] represent fractional and integral part of x, then [x]+...

    Text Solution

    |

  18. Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1",...

    Text Solution

    |

  19. If the function f(x) = [4.8 + asinx] (where [.]- * denotes the greates...

    Text Solution

    |

  20. [(4)/(5)] + [(4)/(5)+(1)/(1000)] + [(4)/(5)+(2)/(1000)] + ...+[(4)/(5)...

    Text Solution

    |