Home
Class 12
MATHS
Let g(x) = x - [x] - 1 and f(x) = {{:(-1...

Let g(x) = x - [x] - 1 and `f(x) = {{:(-1", " x lt 0),(0", "x =0),(1", " x gt 0):}` [.] represents the greatest integer function then for all x, f(g(x)) = .

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the functions \( g(x) \) and \( f(x) \) and then find \( f(g(x)) \). ### Step 1: Define the functions We have: - \( g(x) = x - [x] - 1 \) - \( f(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases} \) ### Step 2: Understand the function \( g(x) \) The function \( g(x) \) can be rewritten using the definition of the greatest integer function \( [x] \). The expression \( x - [x] \) gives the fractional part of \( x \), denoted as \( \{x\} \). Therefore, we can express \( g(x) \) as: \[ g(x) = \{x\} - 1 \] where \( \{x\} = x - [x] \). ### Step 3: Analyze the range of \( g(x) \) The fractional part \( \{x\} \) always lies in the range \( [0, 1) \). Thus: - The minimum value of \( g(x) \) occurs when \( \{x\} = 0 \), giving \( g(x) = 0 - 1 = -1 \). - The maximum value occurs when \( \{x\} \) approaches 1, giving \( g(x) \) values approaching \( 0 - 1 = -1 \). Thus, \( g(x) \) will always yield values in the range \( (-1, 0) \). ### Step 4: Evaluate \( f(g(x)) \) Now we need to find \( f(g(x)) \). Since \( g(x) \) always results in values in the interval \( (-1, 0) \), we can apply the function \( f \): - For \( g(x) < 0 \), according to the definition of \( f(x) \): \[ f(g(x)) = -1 \] ### Conclusion Thus, for all \( x \): \[ f(g(x)) = -1 \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] "and " f(x)={{:(-1","x lt 0),(0","x=0),(1","x gt 0):} Then, for all x, find f(g(x)).

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):} (where [.] denotes the greatest integer function). Then f(x) is

Let g(x)=1+x-[x] and f(x)={ -1,x 0. Then for all x, f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

Let f(x) = ([x] - ["sin" x])/(1 - "sin" [cos x]) and g (x) = (1)/(f(x)) and [] represents the greatest integer function, then

f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):} , (where [.] represents the greatest integer function). Then g(f(x)) is discontinuous at x = _______________

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. Range ofthe function f(x)=cos(Ksin x) is [-1,1], then the least positi...

    Text Solution

    |

  2. Consider that the graph of y = f(x) is symmetrie about the lines x =...

    Text Solution

    |

  3. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  4. If f(x) = 4^(x) - 2^(x + 1) + 5, then range of f(x) is

    Text Solution

    |

  5. Let g be a real valued function defined on the interval (-1, 1) such t...

    Text Solution

    |

  6. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  7. if f(x) is a real valued function defined as f(x)={min{|x|,1/x^2,1/x^3...

    Text Solution

    |

  8. Select the correct option

    Text Solution

    |

  9. Let f(x) = [x]^(2) + [x+1] - 3, where [.] denotes the greatest integer...

    Text Solution

    |

  10. If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x...

    Text Solution

    |

  11. If tan ax + cot ax and |tan x| + |cot x| are periodic functions of th...

    Text Solution

    |

  12. If {x} and [x] represent fractional and integral part of x, then [x]+...

    Text Solution

    |

  13. Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1",...

    Text Solution

    |

  14. If the function f(x) = [4.8 + asinx] (where [.]- * denotes the greates...

    Text Solution

    |

  15. [(4)/(5)] + [(4)/(5)+(1)/(1000)] + [(4)/(5)+(2)/(1000)] + ...+[(4)/(5)...

    Text Solution

    |

  16. A real valued function f(x) satisfies the functional equation f(x-y) ...

    Text Solution

    |

  17. lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1...

    Text Solution

    |

  18. Let f: RvecRa n dg: RvecR be two one-one and onto function such that t...

    Text Solution

    |

  19. If f(x+10) + f(x+4)= 0, there f(x) is a periodic function with period

    Text Solution

    |

  20. If f(x) = a(x^n +3), f(1) = 12, f(3) = 36, then f(2) is equal to

    Text Solution

    |