Home
Class 12
MATHS
[(4)/(5)] + [(4)/(5)+(1)/(1000)] + [(4)/...

`[(4)/(5)] + [(4)/(5)+(1)/(1000)] + [(4)/(5)+(2)/(1000)] + ...+[(4)/(5) + (999)/(1000)] =`
where [.] denotes greatest integer function

A

998

B

980

C

800

D

801

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the sum of the series: \[ \left\lfloor \frac{4}{5} \right\rfloor + \left\lfloor \frac{4}{5} + \frac{1}{1000} \right\rfloor + \left\lfloor \frac{4}{5} + \frac{2}{1000} \right\rfloor + \ldots + \left\lfloor \frac{4}{5} + \frac{999}{1000} \right\rfloor \] ### Step 1: Understanding the Greatest Integer Function The greatest integer function, denoted as \(\lfloor x \rfloor\), gives the largest integer less than or equal to \(x\). ### Step 2: Calculate the First Term The first term is: \[ \left\lfloor \frac{4}{5} \right\rfloor = \left\lfloor 0.8 \right\rfloor = 0 \] ### Step 3: Calculate the General Term The general term can be expressed as: \[ \left\lfloor \frac{4}{5} + \frac{k}{1000} \right\rfloor \quad \text{for } k = 0, 1, 2, \ldots, 999 \] This can be rewritten as: \[ \left\lfloor 0.8 + \frac{k}{1000} \right\rfloor \] ### Step 4: Determine the Values of \(k\) We need to determine when \(0.8 + \frac{k}{1000} \geq 1\): \[ 0.8 + \frac{k}{1000} \geq 1 \implies \frac{k}{1000} \geq 0.2 \implies k \geq 200 \] Thus, for \(k = 0\) to \(k = 199\), we have: \[ \left\lfloor 0.8 + \frac{k}{1000} \right\rfloor = 0 \] And for \(k = 200\) to \(k = 999\), we have: \[ \left\lfloor 0.8 + \frac{k}{1000} \right\rfloor = 1 \] ### Step 5: Count the Terms - From \(k = 0\) to \(k = 199\) (200 terms), the value is \(0\). - From \(k = 200\) to \(k = 999\) (800 terms), the value is \(1\). ### Step 6: Calculate the Total Sum The total sum can be calculated as: \[ \text{Sum} = 0 \times 200 + 1 \times 800 = 800 \] ### Final Answer Thus, the value of the given series is: \[ \boxed{800} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - A) Objective Type Questions (one option is correct)|102 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - B) Objective Type Questions (one option is correct)
  1. Range ofthe function f(x)=cos(Ksin x) is [-1,1], then the least positi...

    Text Solution

    |

  2. Consider that the graph of y = f(x) is symmetrie about the lines x =...

    Text Solution

    |

  3. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  4. If f(x) = 4^(x) - 2^(x + 1) + 5, then range of f(x) is

    Text Solution

    |

  5. Let g be a real valued function defined on the interval (-1, 1) such t...

    Text Solution

    |

  6. If f(x) is a real-valued function defined as f(x)=In (1-sinx), then t...

    Text Solution

    |

  7. if f(x) is a real valued function defined as f(x)={min{|x|,1/x^2,1/x^3...

    Text Solution

    |

  8. Select the correct option

    Text Solution

    |

  9. Let f(x) = [x]^(2) + [x+1] - 3, where [.] denotes the greatest integer...

    Text Solution

    |

  10. If 2^(f(x)) = (2+x)/(2-x), x in (-2, 2) and f(x) = lambda f((8x)/(4+ x...

    Text Solution

    |

  11. If tan ax + cot ax and |tan x| + |cot x| are periodic functions of th...

    Text Solution

    |

  12. If {x} and [x] represent fractional and integral part of x, then [x]+...

    Text Solution

    |

  13. Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1",...

    Text Solution

    |

  14. If the function f(x) = [4.8 + asinx] (where [.]- * denotes the greates...

    Text Solution

    |

  15. [(4)/(5)] + [(4)/(5)+(1)/(1000)] + [(4)/(5)+(2)/(1000)] + ...+[(4)/(5)...

    Text Solution

    |

  16. A real valued function f(x) satisfies the functional equation f(x-y) ...

    Text Solution

    |

  17. lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1...

    Text Solution

    |

  18. Let f: RvecRa n dg: RvecR be two one-one and onto function such that t...

    Text Solution

    |

  19. If f(x+10) + f(x+4)= 0, there f(x) is a periodic function with period

    Text Solution

    |

  20. If f(x) = a(x^n +3), f(1) = 12, f(3) = 36, then f(2) is equal to

    Text Solution

    |