Home
Class 12
MATHS
Let f : [-3, 3] rarr R defined by f(x) =...

Let `f : [-3, 3] rarr R` defined by `f(x) = [(x^(2))/(a)] tan ax + sex ax`. Where [] represents greatest integer function
If f(x) is an even function, then

A

`a gt 3`

B

`a lt 3`

C

`a gt 9`

D

`a lt 9`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) such that the function \( f(x) = \left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) + \sec(ax) \) is an even function, we need to follow these steps: ### Step 1: Understand the condition for an even function A function \( f(x) \) is considered even if it satisfies the condition: \[ f(x) = f(-x) \] for all \( x \) in its domain. ### Step 2: Calculate \( f(-x) \) Given: \[ f(x) = \left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) + \sec(ax) \] Let's find \( f(-x) \): \[ f(-x) = \left\lfloor \frac{(-x)^2}{a} \right\rfloor \tan(a(-x)) + \sec(a(-x)) \] Since \( (-x)^2 = x^2 \), we have: \[ f(-x) = \left\lfloor \frac{x^2}{a} \right\rfloor \tan(-ax) + \sec(-ax) \] Using the trigonometric identities \( \tan(-\theta) = -\tan(\theta) \) and \( \sec(-\theta) = \sec(\theta) \), we can simplify this to: \[ f(-x) = \left\lfloor \frac{x^2}{a} \right\rfloor (-\tan(ax)) + \sec(ax) \] This simplifies to: \[ f(-x) = -\left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) + \sec(ax) \] ### Step 3: Set \( f(x) = f(-x) \) Now we equate \( f(x) \) and \( f(-x) \): \[ \left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) + \sec(ax) = -\left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) + \sec(ax) \] Subtracting \( \sec(ax) \) from both sides, we get: \[ \left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) = -\left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) \] This implies: \[ 2\left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) = 0 \] ### Step 4: Analyze the equation For the equation \( 2\left\lfloor \frac{x^2}{a} \right\rfloor \tan(ax) = 0 \) to hold true, either: 1. \( \left\lfloor \frac{x^2}{a} \right\rfloor = 0 \) or 2. \( \tan(ax) = 0 \) ### Step 5: Solve for \( \left\lfloor \frac{x^2}{a} \right\rfloor = 0 \) The greatest integer function \( \left\lfloor \frac{x^2}{a} \right\rfloor = 0 \) implies: \[ 0 \leq \frac{x^2}{a} < 1 \] This leads to: \[ 0 \leq x^2 < a \] Given the domain \( x \in [-3, 3] \), the maximum value of \( x^2 \) is \( 9 \). Thus, we require: \[ a > 9 \] ### Conclusion The function \( f(x) \) is even if \( a > 9 \). ### Final Answer The value of \( a \) must be greater than 9. ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - E) Assertion - Reason Type Questions|15 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix-Match Type Questions|1 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one option are correct)|17 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Let f : [-3, 3] rarr R defined by f(x) = [(x^(2))/(a)] tan ax + sex ax . Then If f(x) is an odd function, then

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let f(x) = [x] and [] represents the greatest integer function, then

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f : [2, 4) rarr [1, 3) be a function defined by f(x) = x - [(x)/(2)] (where [.] denotes the greatest integer function). Then f^(-1) equals

AAKASH INSTITUTE ENGLISH-RELATIONS AND FUNCTIONS -Assignment (Section - D) Linked Comprehension Type Questions
  1. Let f(x) be a real valued function such that the area of an equilatera...

    Text Solution

    |

  2. Let f(x) be a real valued function such that the area of an equilatera...

    Text Solution

    |

  3. Let f(x) be a real valued function such that the area of an equilatera...

    Text Solution

    |

  4. Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |...

    Text Solution

    |

  5. Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |...

    Text Solution

    |

  6. Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |...

    Text Solution

    |

  7. The absolute valued function f is defined as f(x) = {{:(x,, x ge 0),(-...

    Text Solution

    |

  8. The absolute valued function f is defined as f(x) = {{:(x,, x ge 0),(-...

    Text Solution

    |

  9. Consider that f : A rarr B (i) If f(x) is one-one f(x(1)) = f(x(2)) ...

    Text Solution

    |

  10. Consider that f : A rarr B (i) If f(x) is one-one f(x(1)) = f(x(2)) ...

    Text Solution

    |

  11. Consider that f : A rarr B (i) If f(x) is one-one f(x(1)) = f(x(2)) ...

    Text Solution

    |

  12. Let f : [-3, 3] rarr R defined by f(x) = [(x^(2))/(a)] tan ax + sex ax...

    Text Solution

    |

  13. Let f : [-3, 3] rarr R defined by f(x) = [(x^(2))/(a)] tan ax + sex ax...

    Text Solution

    |

  14. Let f : [-3, 3] rarr R defined by f(x) = [(x^(2))/(a)] tan ax + sex ax...

    Text Solution

    |

  15. Let f(x) = x^(2) - 3x + 2 be a function defined from R rarr R and |x| ...

    Text Solution

    |

  16. Let f(x) = x^(2) - 3x + 2 be a function defined from R rarr R and |x| ...

    Text Solution

    |

  17. Let f(x) = x^(2) - 3x + 2 be a function defined from R rarr R and |x| ...

    Text Solution

    |