Home
Class 12
MATHS
If f(x) = sqrt(x+2sqrt(x+1)) + sqrt(x-2s...

If `f(x) = sqrt(x+2sqrt(x+1)) + sqrt(x-2sqrt(x-1)), x ge 1`.
Statement-1 : Then, `f(x) = 2`, when `x in [1, 2]`
and
Statement-2 : `sqrt((f(x))^(2)) = {{:(f(x)",", f(x) ge 0),(-f(x)",", f(x) lt 0):}`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement -1 is False, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sqrt{x + 2\sqrt{x+1}} + \sqrt{x - 2\sqrt{x-1}} \) for \( x \geq 1 \) and evaluate the two statements provided. ### Step 1: Evaluate \( f(1) \) Let's first calculate \( f(1) \): \[ f(1) = \sqrt{1 + 2\sqrt{1+1}} + \sqrt{1 - 2\sqrt{1-1}} \] Calculating inside the square roots: \[ = \sqrt{1 + 2\sqrt{2}} + \sqrt{1 - 0} \] \[ = \sqrt{1 + 2\sqrt{2}} + 1 \] ### Step 2: Evaluate \( f(2) \) Now, let's calculate \( f(2) \): \[ f(2) = \sqrt{2 + 2\sqrt{2+1}} + \sqrt{2 - 2\sqrt{2-1}} \] Calculating inside the square roots: \[ = \sqrt{2 + 2\sqrt{3}} + \sqrt{2 - 2} \] \[ = \sqrt{2 + 2\sqrt{3}} + 0 \] \[ = \sqrt{2 + 2\sqrt{3}} \] ### Step 3: Check if \( f(x) = 2 \) for \( x \in [1, 2] \) We need to check if \( f(x) = 2 \) for \( x \in [1, 2] \). From our calculations: - \( f(1) = \sqrt{1 + 2\sqrt{2}} + 1 \) - \( f(2) = \sqrt{2 + 2\sqrt{3}} \) We need to check if these values equal 2. 1. For \( f(1) \): \[ \sqrt{1 + 2\sqrt{2}} + 1 \neq 2 \quad (\text{since } \sqrt{1 + 2\sqrt{2}} > 1) \] 2. For \( f(2) \): \[ \sqrt{2 + 2\sqrt{3}} \neq 2 \quad (\text{since } \sqrt{2 + 2\sqrt{3}} > 2) \] Thus, \( f(x) \neq 2 \) for \( x \in [1, 2] \). Therefore, **Statement 1 is false**. ### Step 4: Analyze Statement 2 The second statement claims: \[ \sqrt{(f(x))^2} = \begin{cases} f(x) & \text{if } f(x) \geq 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases} \] Since \( f(x) \) is defined for \( x \geq 1 \) and is always non-negative (as it is a sum of square roots), we can simplify: \[ \sqrt{(f(x))^2} = |f(x)| = f(x) \quad \text{(since } f(x) \geq 0\text{)} \] Thus, **Statement 2 is true**. ### Conclusion - Statement 1 is false. - Statement 2 is true.
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix-Match Type Questions|1 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - G) Integer Answer Type Questions|8 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

If f(x)=(1)/(sqrt(x+2sqrt(2x-4)))+(1)/(sqrt(x-2sqrt(2x-4))) for xgt2 then find f(11).

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x) = x/(sqrt(1+x^2) then fofof(x)

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If f(x)=sqrt(1-e^(-x^2)) , then at x=0f(x) is