Home
Class 12
MATHS
Statement-1 : f(x) = log(10)(log(1/x)x) ...

Statement-1 : `f(x) = log_(10)(log_(1/x)x)` will not be defined for any value of x.
and
Statement -2 : `log_(1//x)x = -1, AA x gt 0, x != 1`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.

C

Statement -1 is False, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix-Match Type Questions|1 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - G) Integer Answer Type Questions|8 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|17 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

If f.(x)= log((1+x)/(1-x)) , then

Statement 1 : f(x)=log_(e+x) (pi+x) is strictly increasing for all . Statement 2 : pi+x gt e+x, AA x gt 0

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

The value of x, log_(1/2)x >= log_(1/3)x is

Solve log_(2).(x-1)/(x-2) gt 0 .

Find x if log_(2) log_(1//2) log_(3) x gt 0

f(x) = log(x^(2)+2)-log3 in [-1,1]

(log x)^(log x),x gt1

Statement -1: f(x) = (1)/(2)(3^(x) + 3^(-x)) , then f(x) ge 1 AA x in R . Statement -2 : The domain of f(x) = log_(3)|x| + sqrt(x^(2) - 1) + (1)/(|x|) is R - [-1, 1]. Statement-3 : If f(x^(2) - 2x + 3) = x-1 , then f(2) + f(0) is euqal to -2.