Home
Class 12
MATHS
f(x) = |x-1| + |x-2|, g(x) = x+(1)/(x), ...

`f(x) = |x-1| + |x-2|, g(x) = x+(1)/(x), x gt 0` if `m_(1) = min (f(x))` and `m_(2) = min (g(x))`, then `(m_(1)+m_(2))/(m_(2)-m_(1))` is equal to_________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum values of the functions \( f(x) = |x-1| + |x-2| \) and \( g(x) = x + \frac{1}{x} \) for \( x > 0 \). We will denote the minimum of \( f(x) \) as \( m_1 \) and the minimum of \( g(x) \) as \( m_2 \). Finally, we will calculate the expression \( \frac{m_1 + m_2}{m_2 - m_1} \). ### Step 1: Finding \( m_1 = \min f(x) \) 1. **Identify the critical points of \( f(x) \)**: - The function \( f(x) \) involves absolute values, which change behavior at \( x = 1 \) and \( x = 2 \). - We will consider three intervals: \( (-\infty, 1] \), \( (1, 2] \), and \( (2, \infty) \). 2. **Evaluate \( f(x) \) in each interval**: - For \( x \leq 1 \): \[ f(x) = |x-1| + |x-2| = (1-x) + (2-x) = 3 - 2x \] - For \( 1 < x \leq 2 \): \[ f(x) = |x-1| + |x-2| = (x-1) + (2-x) = 1 \] - For \( x > 2 \): \[ f(x) = |x-1| + |x-2| = (x-1) + (x-2) = 2x - 3 \] 3. **Determine the minimum value**: - In the interval \( (-\infty, 1] \), as \( x \) approaches 1, \( f(x) \) approaches \( 1 \). - In the interval \( (1, 2] \), \( f(x) = 1 \). - In the interval \( (2, \infty) \), as \( x \) increases, \( f(x) \) increases. - Therefore, the minimum value \( m_1 = 1 \). ### Step 2: Finding \( m_2 = \min g(x) \) 1. **Differentiate \( g(x) \)**: \[ g(x) = x + \frac{1}{x} \] \[ g'(x) = 1 - \frac{1}{x^2} \] 2. **Set the derivative to zero**: \[ 1 - \frac{1}{x^2} = 0 \implies x^2 = 1 \implies x = 1 \quad (\text{since } x > 0) \] 3. **Evaluate \( g(x) \) at \( x = 1 \)**: \[ g(1) = 1 + \frac{1}{1} = 2 \] 4. **Determine the behavior of \( g(x) \)**: - For \( x < 1 \), \( g'(x) < 0 \) (decreasing). - For \( x > 1 \), \( g'(x) > 0 \) (increasing). - Thus, \( g(x) \) has a minimum at \( x = 1 \), so \( m_2 = 2 \). ### Step 3: Calculate \( \frac{m_1 + m_2}{m_2 - m_1} \) 1. **Substitute the values**: \[ m_1 = 1, \quad m_2 = 2 \] \[ \frac{m_1 + m_2}{m_2 - m_1} = \frac{1 + 2}{2 - 1} = \frac{3}{1} = 3 \] ### Final Answer: \[ \frac{m_1 + m_2}{m_2 - m_1} = 3 \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - H) Multiple True-False Type Questions|3 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - I) Subjective Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix-Match Type Questions|1 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

l_(1)=int2^(x)dx=p(x)+c_(1)andl_(2)=int((1)/(2))^(x)dx=m(x)+c_(1) then p(x)-m(x) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If f(x)=(3x^(2)+1)/(sqrt(x^(4)+x^(2))) AA 0gtxlesqrt(2) , then f(x) has minimum value M at x=m . Then (m^(2) +1/(M^(2))) is equal to

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)