Home
Class 12
MATHS
Period of the function f(x) = sin((pi x)...

Period of the function `f(x) = sin((pi x)/(2)) cos((pi x)/(2))` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) \), we can follow these steps: ### Step 1: Use the Product-to-Sum Identity We start by using the product-to-sum identity for sine and cosine. The identity states that: \[ 2 \sin A \cos B = \sin(A + B) + \sin(A - B) \] In our case, we can rewrite \( f(x) \) as: \[ f(x) = \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) = \frac{1}{2} \cdot 2 \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) \] This simplifies to: \[ f(x) = \frac{1}{2} \left( \sin\left(\frac{\pi x}{2} + \frac{\pi x}{2}\right) + \sin\left(\frac{\pi x}{2} - \frac{\pi x}{2}\right) \right) \] However, we can also directly use the double angle identity: \[ \sin A \cos A = \frac{1}{2} \sin(2A) \] Thus, we can write: \[ f(x) = \frac{1}{2} \sin\left(\pi x\right) \] ### Step 2: Determine the Period of the Sine Function The standard sine function \( \sin(kx) \) has a period given by: \[ T = \frac{2\pi}{k} \] In our case, we have: \[ f(x) = \frac{1}{2} \sin(\pi x) \] Here, \( k = \pi \). ### Step 3: Calculate the Period Using the formula for the period: \[ T = \frac{2\pi}{\pi} = 2 \] ### Conclusion Thus, the period of the function \( f(x) = \sin\left(\frac{\pi x}{2}\right) \cos\left(\frac{\pi x}{2}\right) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - H) Multiple True-False Type Questions|3 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - I) Subjective Type Questions|17 Videos
  • RELATIONS AND FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - F) Matrix-Match Type Questions|1 Videos
  • PROBABILITY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION-J (aakash challengers questions)|11 Videos
  • SEQUENCES AND SERIES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - J) Aakash Challengers|11 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

The period of the function f(x)=k cos kx is (pi)/(2) . The amplitude of f is

The period of the function f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+pi/3)) is (where c is constant) 1 (b) pi/2 (c) pi (d) cannot be determined

In each of the following cases find the period of the function if it is periodic. (i) f(x)="sin"(pi x)/(sqrt(2))+"cos"(pi x)/(sqrt(3)) " (ii) " f(x)="sin"(pi x)/(sqrt(3))+"cos"(pi x)/(2sqrt(3))

period the function f(x)=(sin{sin(n x)})/(tan (x/n)) , n in N, is 6pi then n= --------