Home
Class 12
MATHS
STATEMENT -1 : If f(x) = log(x^(2)) (lo...

STATEMENT -1 : If f(x) `= log_(x^(2)) (log x) , " then" f'( e) = 1/e `
STATEMENT -2 : If a gt 0 , b gt 0 and ` a ne b` then ` log_(a) b = (log b)/(log a)`

A

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

B

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct expanation for statement-1

C

Statement-1 is True, Statement-2 is false

D

Statement-1 is False, Statement-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements step by step. ### Step 1: Analyze Statement 1 We have the function: \[ f(x) = \log_{x^2}(\log x) \] Using the change of base formula for logarithms, we can rewrite this: \[ f(x) = \frac{\log(\log x)}{\log(x^2)} \] Since \(\log(x^2) = 2\log x\), we can simplify this further: \[ f(x) = \frac{\log(\log x)}{2 \log x} \] ### Step 2: Differentiate \( f(x) \) To find \( f'(x) \), we will use the quotient rule: If \( f(x) = \frac{u}{v} \), then: \[ f'(x) = \frac{u'v - uv'}{v^2} \] Here, let: - \( u = \log(\log x) \) - \( v = 2 \log x \) Now, we need to find \( u' \) and \( v' \): 1. Differentiate \( u \): \[ u' = \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x} \] 2. Differentiate \( v \): \[ v' = 2 \cdot \frac{1}{x} = \frac{2}{x} \] Now applying the quotient rule: \[ f'(x) = \frac{\left(\frac{1}{x \log x}\right)(2 \log x) - \left(\log(\log x)\right)\left(\frac{2}{x}\right)}{(2 \log x)^2} \] This simplifies to: \[ f'(x) = \frac{\frac{2}{x} - \frac{2 \log(\log x)}{x}}{4 (\log x)^2} \] \[ = \frac{2(1 - \log(\log x))}{4x (\log x)^2} = \frac{1 - \log(\log x)}{2x (\log x)^2} \] ### Step 3: Evaluate \( f'(e) \) Now we substitute \( x = e \): \[ f'(e) = \frac{1 - \log(\log e)}{2e (\log e)^2} \] Since \( \log e = 1 \), we have: \[ \log(\log e) = \log(1) = 0 \] Thus: \[ f'(e) = \frac{1 - 0}{2e (1)^2} = \frac{1}{2e} \] ### Conclusion for Statement 1 The statement claims \( f'(e) = \frac{1}{e} \), but we found \( f'(e) = \frac{1}{2e} \). Therefore, Statement 1 is **false**. ### Step 4: Analyze Statement 2 The second statement is: "If \( a > 0 \), \( b > 0 \) and \( a \neq b \), then \( \log_a b = \frac{\log b}{\log a} \)." This is a well-known property of logarithms and is **true**. ### Final Result - Statement 1: False - Statement 2: True ### Summary The correct answer is that Statement 1 is false and Statement 2 is true.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - F|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -G|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

(log x)^(log x),x gt1

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If 3f(x)-f((1)/(x))= log_(e) x^(4) for x gt 0 ,then f(e^(x))=

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

STATEMENT-1 : Number of solution of log |x| = theta^(x) is two and STATEMENT-2 : If log_(30) 3 - a , log_(30) 5 = b "then" log_(30) 8 = 3 (1 - a - b) .

If f(x)=(log)_(x^2)(logx) , then f^(prime)(x) at x=e is (a) 0 (b) 1 (c) 1/e (d) 1/2e

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

Statement-1 : If x^("log"_(x) (3-x)^(2)) = 25, then x =-2 Statement-2: a^("log"_(a) x) = x,"if" a gt 0, x gt 0 " and " a ne 1