Home
Class 12
MATHS
STATEMENT -1 : for the function y= f(x),...

STATEMENT -1 : for the function y= f(x), `f(x) ,({1+((dy)/dx)^(2)}^(3/2))/((d^(2)y)/(dx^(2))) = - ({1+ (dx/dy)^(2)}^(3/2))/((d^(2)x)/(dy^(2)))`
STATEMENT -2 : `(dy)/(dx) = (1/(dx))/dy and (d^(2)y)/(dx^(2)) = d/dx (dy/(dx))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and determine their validity step by step. ### Step 1: Analyze Statement 1 We start with the equation given in Statement 1: \[ \frac{(1 + \left(\frac{dy}{dx}\right)^2)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = -\frac{(1 + \left(\frac{dx}{dy}\right)^2)^{\frac{3}{2}}}{\frac{d^2x}{dy^2}} \] #### Step 1.1: Rewrite \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) Using the relationships: \[ \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \quad \text{and} \quad \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) \] We can rewrite the left-hand side (LHS) of the equation. #### Step 1.2: Substitute into LHS Substituting the expressions into LHS, we get: \[ \text{LHS} = \frac{\left(1 + \left(\frac{1}{\frac{dx}{dy}}\right)^2\right)^{\frac{3}{2}}}{\frac{d}{dx}\left(\frac{dy}{dx}\right)} \] This simplifies to: \[ \text{LHS} = \frac{\left(1 + \frac{1}{\left(\frac{dx}{dy}\right)^2}\right)^{\frac{3}{2}}}{\frac{d}{dx}\left(\frac{dy}{dx}\right)} \] #### Step 1.3: Analyze the Right-Hand Side (RHS) Now, we analyze the right-hand side (RHS): \[ \text{RHS} = -\frac{\left(1 + \left(\frac{dx}{dy}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2x}{dy^2}} \] #### Step 1.4: Compare LHS and RHS We need to check if LHS equals RHS. However, the negative sign in front of RHS indicates that LHS cannot equal RHS unless both sides are zero, which is generally not the case. Thus, we conclude that Statement 1 is **false**. ### Step 2: Analyze Statement 2 Statement 2 states: \[ \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \quad \text{and} \quad \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) \] #### Step 2.1: Verify the First Part The first part is correct. The derivative \(\frac{dy}{dx}\) is indeed the reciprocal of \(\frac{dx}{dy}\). #### Step 2.2: Verify the Second Part The second part is also correct. The second derivative \(\frac{d^2y}{dx^2}\) is defined as the derivative of \(\frac{dy}{dx}\) with respect to \(x\). ### Conclusion Since both statements are found to be false, we conclude: - **Statement 1**: False - **Statement 2**: False
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - F|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -G|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

The degree of the differential equation [1+((dy)/(dx))^(2)]^(3//2)=(d^(2)y)/(dx^(2))"is"

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

for any differential function y= F (x) : the value of ( d^2 y) /( dx^2) +((dy)/(dx)) ^3 . (d^2 x)/( dy^2)

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is