Home
Class 12
MATHS
Match the following : {:("Column I "...

Match the following :
` {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -G|3 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - E|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Match the following : {:("Column-I" , " Column - II"), ("(A)" lim_(x to pi/4)(sin2x)^(tan^(2)2x), "(p)" 1/2),("(B)" lim_(x to oo) ((2x-1)/(2x+1))^(x) , "(q)"e^(-1/2)),("(C)" lim_(x to pi/2)(tanx)^(tan 2x) , "(r)" e^(-1)),("(D)" lim_(x to pi/4) tan2x tan(pi/4-x), "(s)" 1):}

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

{:("Column-I","Column-II"),(A.f(x) = (1)/(sqrt(x -2)),p.lim_(x to 0)f(x) =1),(B. f(x) = (3x - "sin"x)/(x + "sin" x), q. lim_(x to 0)f(x) = 0),(C.f(x) = x "sin"(pi)/(x) f(0)=0,r.lim_(x to oo) f(x) = 0),(f(x) = tan^(-1) (1)/(x),s.lim_(x to 0) "does not exist"):}

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2) - (1)/(x+k) , then find k ?

If lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5 , then find the value of k.