Home
Class 12
MATHS
Let f(x)=(x+x^2+...+x^n-n)/(x-1), g(x)=(...

Let `f(x)=(x+x^2+...+x^n-n)/(x-1), g(x)=(4^n+5^n)^(1/n)` and `alpha` and `beta` are the roots of equation `lim_(x rarr 1) f(x)= lim_(n rarr oo) g(x)` then the value of `sum_(n=0)^oo (1/alpha+1/beta)^n` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression given the functions \( f(x) \) and \( g(x) \) and the limits involving them. ### Step 1: Analyze the function \( f(x) \) The function is given as: \[ f(x) = \frac{x + x^2 + x^3 + \ldots + x^n - n}{x - 1} \] This is a geometric series. The sum of the series \( x + x^2 + \ldots + x^n \) can be expressed as: \[ S = \frac{x(1 - x^n)}{1 - x} \] Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{\frac{x(1 - x^n)}{1 - x} - n}{x - 1} \] ### Step 2: Simplify \( f(x) \) To simplify \( f(x) \), we can multiply the numerator and denominator by \( (x - 1) \): \[ f(x) = \frac{x(1 - x^n) - n(1 - x)}{(x - 1)(x - 1)} \] Now, substituting \( x = 1 \) gives \( 0/0 \) form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiating the numerator and denominator separately: 1. **Numerator**: Differentiate \( x(1 - x^n) - n(1 - x) \) - Derivative: \( (1 - x^n) + x(-nx^{n-1}) + n \) 2. **Denominator**: Differentiate \( (x - 1)^2 \) - Derivative: \( 2(x - 1) \) Now, we take the limit as \( x \to 1 \): \[ \lim_{x \to 1} \frac{(1 - 1^n) + 1(-n \cdot 1^{n-1}) + n}{2(1 - 1)} = \lim_{x \to 1} \frac{-n + n}{0} = \text{undefined} \] We need to evaluate the limit again, so we apply L'Hôpital's Rule again if necessary. ### Step 4: Analyze \( g(x) \) The function \( g(x) \) is given as: \[ g(x) = (4^n + 5^n)^{1/n} \] As \( n \to \infty \), \( g(x) \) approaches \( 5 \) because \( 5^n \) dominates \( 4^n \). ### Step 5: Set the limits equal Now we have: \[ \lim_{x \to 1} f(x) = \lim_{n \to \infty} g(x) = 5 \] ### Step 6: Find roots \( \alpha \) and \( \beta \) From the earlier steps, we can derive a quadratic equation from the limits: \[ \alpha + \beta = -1 \quad \text{and} \quad \alpha \beta = -10 \] The quadratic equation is: \[ x^2 + x - 10 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 40}}{2} = \frac{-1 \pm \sqrt{41}}{2} \] Thus, the roots are: \[ \alpha = \frac{-1 + \sqrt{41}}{2}, \quad \beta = \frac{-1 - \sqrt{41}}{2} \] ### Step 8: Calculate the sum We need to find: \[ \sum_{n=0}^{\infty} \left( \frac{1}{\alpha} + \frac{1}{\beta} \right)^n \] This can be simplified to: \[ \frac{1}{\alpha \beta} = \frac{1}{-10} \] The sum of the infinite geometric series is given by: \[ S = \frac{1}{1 - r} \quad \text{where } r = \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{1}{10} \] Thus: \[ S = \frac{1}{1 - (-\frac{1}{10})} = \frac{1}{1 + \frac{1}{10}} = \frac{1}{\frac{11}{10}} = \frac{10}{11} \] ### Final Result The value of the sum is: \[ \boxed{\frac{10}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - I|8 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

Let f(x)= lim_(n->oo)(sinx)^(2n)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha and beta are the roots of the equation 375 x^(2) - 25x - 2 = 0 , then lim_(n rarr oo) Sigma_(r = 1)^n alpha^(r) + lim_(n rarr oo) Sigma_(r = 1)^n beta^(r) is equal to :

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:

lim_(x rarr oo)((log x)/(x^(n)))

If ""_(alpha)and _(beta) are the roots of equation x^(2)-3x+1=0and a_(n)=alpha^n+beta^(n),ninN then value of (a_(7)+a_(5))/(a_(6))=