Home
Class 12
MATHS
Let f(x) = (x+ x^(2) + …….+ x^(n))/(x -1...

Let `f(x) = (x+ x^(2) + …….+ x^(n))/(x -1) and g(x) = (4^(n) +5^(n))^(1//n)` such that ` lim_(x to 1) f(x) = lim( n to oo) g(x)`

Text Solution

Verified by Experts

The correct Answer is:
n = 5
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - I|8 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x+x^2+...+x^n-n)/(x-1), g(x)=(4^n+5^n)^(1/n) and alpha and beta are the roots of equation lim_(x rarr 1) f(x)= lim_(n rarr oo) g(x) then the value of sum_(n=0)^oo (1/alpha+1/beta)^n is

Let f(x)= lim_(n->oo)(sinx)^(2n)

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ^(2). Let n be the numbers of real roots of g(x) =0, then:

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x), then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=