Home
Class 12
MATHS
Let f(x) is a polynomial satisfying f(x)...

Let `f(x)` is a polynomial satisfying `f(x).f(y) = f(x) +f(y) + f(xy) - 2 ` for all `x, y` and `f(2) = 1025,` then the value of `lim_(x->2) f'(x)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the derivative of the polynomial function \( f(x) \) as \( x \) approaches 2, given the functional equation and the value of \( f(2) \). ### Step-by-step Solution: 1. **Understanding the Functional Equation:** We start with the equation given: \[ f(x) f(y) = f(x) + f(y) + f(xy) - 2 \] for all \( x, y \). 2. **Substituting \( y = \frac{1}{x} \):** Let's set \( y = \frac{1}{x} \) in the functional equation: \[ f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) + f(1) - 2 \] Rearranging gives: \[ f(x) f\left(\frac{1}{x}\right) - f(x) - f\left(\frac{1}{x}\right) + 2 = f(1) \] 3. **Substituting \( x = 1 \):** Now, set \( x = 1 \) in the original equation: \[ f(1) f(1) = f(1) + f(1) + f(1) - 2 \] This simplifies to: \[ f(1)^2 = 3f(1) - 2 \] Rearranging gives: \[ f(1)^2 - 3f(1) + 2 = 0 \] Factoring, we find: \[ (f(1) - 1)(f(1) - 2) = 0 \] Thus, \( f(1) = 1 \) or \( f(1) = 2 \). 4. **Substituting \( y = 1 \) in the Functional Equation:** Now, set \( y = 1 \) in the original equation: \[ f(x) f(1) = f(x) + f(1) + f(x) - 2 \] This simplifies to: \[ f(x) f(1) = 2f(x) + f(1) - 2 \] Rearranging gives: \[ f(1)(f(x) - 1) = 2(f(x) - 1) \] If \( f(x) \neq 1 \), we can divide both sides by \( f(x) - 1 \): \[ f(1) = 2 \] Therefore, we conclude \( f(1) = 2 \). 5. **Finding the Form of \( f(x) \):** From the previous steps, we have: \[ f(x) f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \] This implies that \( f(x) \) can be expressed as: \[ f(x) = x^n + 1 \] for some integer \( n \). 6. **Using the Given Value \( f(2) = 1025 \):** We know: \[ f(2) = 2^n + 1 = 1025 \] Thus: \[ 2^n = 1024 \implies n = 10 \] Therefore, we have: \[ f(x) = x^{10} + 1 \] 7. **Finding the Derivative \( f'(x) \):** Now we find the derivative: \[ f'(x) = 10x^9 \] 8. **Calculating the Limit:** We need to find: \[ \lim_{x \to 2} f'(x) = \lim_{x \to 2} 10x^9 = 10 \cdot 2^9 = 10 \cdot 512 = 5120 \] ### Final Answer: \[ \lim_{x \to 2} f'(x) = 5120 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - I|8 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If 2f(xy) =(f(x))^(y) + (f(y))^(x) for all x, y in R and f(1) =3 , then the value of sum_(t=1)^(10) f(r) is equal to

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

If f(x) is a polynomial in x and f(x).f(1/x)=f(x)+f(1/x) for all x,y and f(2)=33, then f(x) is

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is