Home
Class 12
MATHS
Evaluate: int(x^2+1)/(x^2-5x+6)dx...

Evaluate: `int(x^2+1)/(x^2-5x+6)dx`

Text Solution

Verified by Experts

Since degree of numerator is not less than degree of denominator so this is not a proper rational function.
`:.(x^(2)+1)/(x^(2)-5x+6)=1+(5x-5)/(x^(2)-5x+6)`………`(i)`
Let `(5x-5)/(x^(2)-5x+6)=(5x-5)/((x-2)(x-3))`
`implies(5x-5)/((x-2)(x-3))=(A_(1))/((x-2))+(A_(2))/((x-3))`........`(ii)`
So that, `5x-5=A_(1)(x-3)+A_(2)(x-2)`
Now, equating coefficient of `x` and constant terms on both sides, we get,
`A_(1)+A_(2)=5` and `3A_(1)+2A_(2)=5`
`impliesA_(1)=-5`, `A_(2)=10`
Hence, `(5x-5)/((x-2)(x-3))=(-5)/(x-2)+(10)/(x-3)` [From equation `(ii)`]
`implies(x^(2)+1)/(x^(2)-5x+6)=1-(5)/(x-2)+(10)/(x-3)` [From equation `(i)`]
Integrating both sides,
`int(x^(2)+1)/(x^(2)-5x+6)dx=intdx-int(5)/(x-2)dx+int(10)/(x-3)dx`
`impliesint(x^(2)+1)/(x^(2)-5x+6)dx=x-5log|x-2|+10log|x-3|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2+x-1)/(x^2+x-6)\ dx

Evaluate: int(x^2+x-1)/(x^2+x-6)\ dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2-2)/(x^5-x)\ dx

4) int(x^(2)+1)/(x^(2)-5x+6)dx

Evaluate: int(x^(2)-5x-1)dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(x+1)/(x^2+4x+5)\ dx