Home
Class 12
MATHS
int(0)^(pi//4)(dx)/((1+cos2x))...

`int_(0)^(pi//4)(dx)/((1+cos2x))`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{dx}{1 + \cos 2x} \), we will follow these steps: ### Step 1: Rewrite the integrand using a trigonometric identity We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can express \( 1 + \cos 2x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)(dx)/(1+cos x)

Evaluate int _(0)^(pi//2)(dx)/(1+ cos x)

int_(0)^( pi)(dx)/(1+cos^(2)x)

int_(0)^( pi)(dx)/(1+cos x)

Evaluate the following integral: int_0^(pi//4)(tan^3x)/(1+cos2x)dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

int_(0)^((pi)/(2))(dx)/(2+cos x)

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx