Home
Class 12
MATHS
Choose the correct answer The value of t...

Choose the correct answer The value of the integral `int1/3 1((x-x^3)^(1/3))/(x^4)dx` is (A) 6 (B) 0 (C) 3 (D) 4

Text Solution

Verified by Experts

`int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx=int_(1//3)^(1)([x^(3)((1)/(x^(2))-1)]^(1//3))/(x^(4))dx=int_(1//3)^(1)(((1)/(x^(2))-1)^(1//3))/(x^(3))dx`
Now, put `(1)/(x^(2)-1=timplies-(2)/(x^(3)dx=dt`. Also , when `x=1`, `t=0` and when `x=1//3`, `t=8`.
So, `int_(1//3)^(1)((x-x^(3))^(1//3))/(x^(4))dx=int_(8)^(0)-(1)/(2)t^(1//3)dt`
`=-(1)/(2)[(3)/(4)t^(4//3)]_(8)^(0)`
`=-(3)/(8)(0-8^(4//3))`
`=6`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

The value of integral int1/[(x-3)^(3)(x+2)^(5)]^(1//4)dx is

int((x+x^(3))^(1//3))/(x^(4))dx=

Evaluate the following integral: int_(1//3)^1((x-x^3)^(1//3))/(x^4)dx

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//3))/(x^(4))dx is

Choose the correct answerThe Value of int_(-pi/2)^(pi/2)(x^3+xcosx+tan^5x+1)dx is(A) 0 (B) 2 (C) pi (D) 1

The value of the integral int_0^oox/((1+x)(1+x^2))dx is (pi^)/2 (b) (pi^)/4 (c) (pi^)/6 (d) pi/3

int1/(x^2(x^4+1)^(3/4)) dx