Home
Class 12
MATHS
Evaluate -int(2pi)^(0)|sinx|dx...

Evaluate `-int_(2pi)^(0)|sinx|dx`

Text Solution

AI Generated Solution

To evaluate the integral \(-\int_{2\pi}^{0} |\sin x| \, dx\), we will follow these steps: ### Step 1: Change the limits of integration Using the property of definite integrals, we can change the limits of integration. The property states that: \[ \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \] Thus, we can rewrite our integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(16pi//3)|sinx|dx .

Find the value of int_0^(2pi) |sinx|dx

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate int_(0)^(2pi)|cosx|dx

Evaluate : int_0^(pi//2)sinx\ dx

Evaluate: int_0^(pi//2)sinx\ dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx