Home
Class 12
MATHS
Evaluate -int(3pi//2)^(pi//2)[2sinx]dx, ...

Evaluate `-int_(3pi//2)^(pi//2)[2sinx]dx`, when `[.]` denotes the greatest integer function.

Text Solution

AI Generated Solution

To evaluate the integral \(-\int_{\frac{3\pi}{2}}^{\frac{\pi}{2}} [2\sin x] \, dx\), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Change the limits of integration We can change the limits of integration by switching the upper and lower limits, which introduces a negative sign. Thus, we have: \[ -\int_{\frac{3\pi}{2}}^{\frac{\pi}{2}} [2\sin x] \, dx = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} [2\sin x] \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Evaluate ("lim")_(x->(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.