Home
Class 12
MATHS
Evaluate int(0)^(pi//2)lnsin2xdx...

Evaluate `int_(0)^(pi//2)lnsin2xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx \), we can use a property of definite integrals. ### Step 1: Use the property of definite integrals We know that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(pi//2)sinxdx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate : int_(0)^(pi//2)sin^(8)xdx

Evaluate int_(0)^(pi//2)cos^(4)xdx

Evaluate int_0^(pi/2) log sin xdx

Evaluate: int_0^(pi//2)sin^4xdx

Evaluate: int_0^(pi/2)sin^4xdx

int_0^(pi/2) xsinxsin2xdx

The value int_(0)^(pi//2) sin^(2)xdx will be :

Evaluate : int_(0)^(pi//2)sin^(9)x cos^(7)xdx