Home
Class 12
MATHS
If the function f : [-1,1] to R is conti...

If the function `f : [-1,1] to R` is continuous and even, then show that `int_(0)^(pi//2)f(cos2x)cosxdx=sqrt(2)int_(0)^(pi//4)f(sin2x)cosxdx`.

Text Solution

AI Generated Solution

To prove that \[ \int_{0}^{\frac{\pi}{2}} f(\cos 2x) \cos x \, dx = \sqrt{2} \int_{0}^{\frac{\pi}{4}} f(\sin 2x) \cos x \, dx, \] where \( f : [-1, 1] \to \mathbb{R} \) is continuous and even, we will start with the left-hand side (LHS) and manipulate it step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

Show that: int_0^(pi//2)f(sin2x)sinxdx=sqrt(2)int_0^(pi//4)f(cos2x)cosxdxdot

int_0^(pi/2) (1+sinx)^3cosxdx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to