Home
Class 12
MATHS
The value of the integral int (cos^3x+co...

The value of the integral `int (cos^3x+cos^5 x)/(sin^2 x+sin^4 x) dx` is (A) `sin x-6tan^(-1) (sin x)+C` (B) `sin x-2 (sin x)^(-1)+C` (C) `sin x-2 (sin x)^(-1)-6tan^(-1) (sin x)+C` (D) `sin x-2 (sin x)^(-1)+5tan^(-1) (sin x)+C`

Text Solution

Verified by Experts

Let `f(sinx,cosx)=(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)`
`impliesf(sinx,cosx)=-(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)=-f(sinx,cosx)`
`:.` Let us substitute `sinx=t`
so that `cosxdx=dt`
Thus `int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=int((cos^(2)x+cos^(4)x))/(sin^(2)x+sin^(4)x)cosxdx`
`=int((1-sin^(2)x)+(1-sin^(2)x)^(2))/(sin^(2)x+sin^(4)x)dx`
`=int(1-t^(2)+1+t^(4)-2t^(2))/(t^(2)+t^(4))dt`
`=int(2-3t^(2)+t^(4))/(t^(2)+t^(4))dt`
`=int((t^(2)-2)(t^(2)-1))/(t^(2)(1+t^(2)))dt`
`=int(1+(2)/(t^(2))-(6)/(1+t^(2)))dt`
`=t-(2)/(t)-6tan^(-1)t+C`
`=sinx-2cosecx-6tan^(-1)(sinx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

The value of the integral int(cos^3x+cos^5x)/(sin^2x+sin^4x)dxi s sinx-6tan^(-1)(sinx)+C sinx-2(sinx)^(-1)+C sinx-2(sinx)^(-1)-6tan^(-1)(sinx)+C sinx-2(sinx)^(-1)+5tan^(-1)(sinx)+C

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

tan^(-1) ((1-cos x)/(sin x))

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

int(1)/((sin x-2 cos x) (2 sin x+c osx))dx

The value of the integral int((sin x)/(x))^(6)((x cos x - sin x)/(x^2)) dx is (where , c is an arbitrary constant)

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

The value of the integral - int_(1/4)^(3/4)((pi)/(2)+sin^(-1)x)/(2cos^(-1)x+3sin^(-1)x+sin^(-1)(1-x)) dx is -

(sin 7x + sin 3x )/(cos 7x + cos 3x ) = tan 5x.