Home
Class 12
MATHS
int(x^(3m)+x^(2m)+x^m)(2x^(2m)+3x^m+6)^(...

`int(x^(3m)+x^(2m)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx`

Text Solution

Verified by Experts

We have,
`int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^(m)+6)^((1)/(m))dx`, `x gt 0`
`=int(x^(3m-1)+x^(2m-1)+x^(m-1))(2x^(3m)+3x^(2m)+6x^(m))^((1)/(m))dx`
Let us put `2x^(3m)+3x^(2m)+6x^(m)=z`
so that , `6m(x^(3m-1)+x^(2m-1)+x^(m-1))dx=dz`
Thus `intint(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^(m)+6)^((1)/(m))dx`
`=intz^((1)/(m))(dz)/(6m)=(1)/(6m)*(z^((1)/(m)+1))/((1)/(m)+1)+C`
`=(1)/(6(m+1))(2x^(3m)+3x^(2m)+6x^(m))^((m+1)/(m))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

For any natural number m, evaulate, int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^9m)+6^(t//m)dx, x gt0 int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1) dx is equal to:

If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^3 dx=f(x)+c , then f(x) is:

The number of positive integral values of m , m le 16 for which the equation (x^(2) +x+1) ^(2) - (m-3)(x^(2) +x+1) +m=0, has 4 distinct real root is:

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

int(nx^(n-1)+m^(x)logm)/(x^(n)+m^(x))dx equals