Home
Class 12
MATHS
Evaluate int(0)^(2pi)|cosx|dx...

Evaluate `int_(0)^(2pi)|cosx|dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{2\pi} |\cos x| \, dx \), we can follow these steps: ### Step 1: Use the property of integrals We can use the property of integrals that states: \[ \int_{0}^{2a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] In our case, we can set \( a = \pi \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)|cosx|dx=?

Evaluate (i) int_(0)^(pi)|cosx|dx (ii) int_(0)^(2)|x^(2)+2x-3|dx

Evaluate int_(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsilon[0,pi//2] .

Evaluate: int_0^(pi//2)cosx\ dx

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

Evaluate : int_(0)^(pi//6) (cosx)/(3+4 sin x)dx

Evaluate -int_(2pi)^(0)|sinx|dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_0^(pi/2)|sinx-cosx|dx