Home
Class 12
MATHS
Evaluate intpi/6pi/3(dx)/(1+sqrt(tanx...

Evaluate `intpi/6pi/3(dx)/(1+sqrt(tanx))""`

Text Solution

Verified by Experts

Denoted by `I=int_((pi)/(6))^((PI)/(3))(dx)/(1+sqrt(tanx))=int_((pi)/(6))^((pi)/(3))(sqrt(cosx))/(sqrt(cosx)+sqrt(sinx))dx`……..`(i)`
Now `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`,
Then `l=int_((pi)/(6))^((pi)/(3))(sqrt(cos((pi)/(3)+(pi)/(6)-x)))/(sqrt(cos((pi)/(3)+(pi)/(6)-x)+sqrt(sin((pi)/(3)+(pi)/(6)-x))))dx`
`=int_((pi)/(6))^((pi)/(3))(sqrt(cos((pi)/(2)-x)))/(sqrt(cos((pi)/(2)-x)+sqrt(sin((pi)/(2)-x))))dx`
i.e., `l=int_((pi)/(6))^((pi)/(3))(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx`......`(ii)`
Adding `(i)` and `(ii)`, we get
`2l=int_((pi)/(6))^((pi)/(3))(sqrt(sinx)+sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
`=int_((pi)/(6))^((pi)/(3))dx=(pi)/(3)-(pi)/(6)=(pi)/(6)`
`:.l=(pi)/(12)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate : int_0^(pi/2)(dx)/(1+sqrt(tanx))

Evaluate the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))

Evaluate int(tanx dx)/(sqrt(2+3tan^(2)x)).

Evaluate int_(-pi//3)^(pi//3)(sqrt(1+sin2x))/(|cosx|)dx ,

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

Evaluate of each of the following integral: int_(pi//6)^(pi//3)1/(1+sqrt(tanx))dx

Evaluate: int(sec^4x)/(sqrt(tanx))\ dx