Home
Class 12
MATHS
Evaluate: int(pi//4)^(pi//4)(x+pi//4)/(2...

Evaluate: `int_(pi//4)^(pi//4)(x+pi//4)/(2-cos2x)dx`

Text Solution

Verified by Experts

`I=int_(-(pi)/(4))^((pi)/(4))(x+(pi)/(4))/(2-cos2x)dx=int_(-(pi)/(4))^((pi)/(4))(x)/(2-cos2x)dx+(pi)/(4)int_(-(pi)/(4))^((pi)/(4))(dx)/(2-cos2x)`
`0+(pi)/(4)*2int_(0)^((pi)/(4))(dx)/(2-cos2x)`
(As the first function is odd and second even)
`=(pi)/(2)*int_(0)^((pi)/(4))(dx)/(2-cos2x)`
`=(pi)/(2)*int_(0)^((pi)/(4))(dx)/(2-(2cos^(2)x-1))`
`=(pi)/(2)*int_(0)^((pi)/(4)(dx)/(2sin^(2)x+1)` ltbr `=(pi)/(2)*int_(0)^((pi)/(4))(sec^(2)x)/(3tan^(2)x+1)dx`
Let `t=sqrt(3)tanx`, so that `dt=sqrt(3)sec^(2)xdx`. Also limits `0` and `(pi)/(4)` are changed to `0` and `sqrt(3)`.
The integral becomes
`(pi)/(2)*(1)/(sqrt(3))int_(0)^(sqrt(3))(dt)/(t^(2)+1)=(pi)/(2sqrt(3))[tan^(-1)t]_(0)^(sqrt(3))`
`=(pi)/(2sqrt(3))*tan^(-1)sqrt(3)=(pi)/(2sqrt(3)xx(pi)/(3)`
`=(pi^(2))/(6sqrt(3))`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(-pi//4)^(pi//4) |sin x|dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate : int_((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

Evaluate int _(0)^(pi/4) cos x dx

Evaluate: int_0^(pi//4)tan^2x\ dx

Evaluate: int_0^(pi//4)tan^2x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx