Home
Class 12
MATHS
Evaluate int(0)^(pi)sin^(3)x*cos^(4)xdx...

Evaluate `int_(0)^(pi)sin^(3)x*cos^(4)xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} \sin^3 x \cos^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting \( \sin^3 x \) as \( \sin x \cdot \sin^2 x \): \[ I = \int_{0}^{\pi} \sin x \cdot \sin^2 x \cdot \cos^4 x \, dx \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can substitute: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Competition level Questions|80 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin^(4) x cos^(2)xdx =

3. int_(0)^( pi/2)sin^(2)x cos^(4)xdx

Evaluate : int_(0)^(pi//2)sin^(9)x cos^(7)xdx

Evaluate: int_0^(pi/2)sin^4xdx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

Evaluate int _(0)^(pi//2) sin^(4) x. cos^(6) x dx .

Evaluate : int_(0)^(pi//2)sin^(8)xdx

Evaluate int_0^(2pi) sin^2x cos^4x dx

Evaluate: int_0^(pi//2)sin^4xdx