Home
Class 12
MATHS
int(dx)/(x(1+(logx)^(2))) equals...

`int(dx)/(x(1+(logx)^(2)))` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{x(1 + (\log x)^2)}, \] we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the derivative of \( t \) with respect to \( x \) is \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt = e^t \, dt. \] ### Step 2: Change of Variables Substituting \( x = e^t \) into the integral gives us: \[ I = \int \frac{e^t \, dt}{e^t(1 + t^2)} = \int \frac{dt}{1 + t^2}. \] ### Step 3: Integrate The integral \[ \int \frac{dt}{1 + t^2} \] is a standard integral that equals \[ \tan^{-1}(t) + C, \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now, substituting back \( t = \log x \): \[ I = \tan^{-1}(\log x) + C. \] ### Final Answer Thus, the final answer is \[ \int \frac{dx}{x(1 + (\log x)^2)} = \tan^{-1}(\log x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(x(x^(2)+1))" equals "

Evaluate int(logx)/((1+logx)^(2))dx .

int(logx/(1+logx)^2)dx

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

int(xcosxlogx-sinx)/(x(logx)^2)dx is equal to (A) sinx+c (B) logxsinx+c (C) logx+sinx+c (D) none of these

int((x+1)(x+logx)^2)/(2x)dx

int(dx)/(x.logx.log(logx))=

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to