Home
Class 12
MATHS
If int f(x)dx = F(x), f(x) is a continu...

If `int f(x)dx = F(x), f(x)` is a continuous function,then `int (f(x))/(F(x))dx` equals

A

`log_(e)|f(x)|+C`

B

`log_(e)|F(x)|+C`

C

`F(x)+C`

D

`(f(x))^(2)+C`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

int (f'(x))/( f(x) log(f(x)))dx is equal to

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x) is continuous in [1,2] then int_(1)^(2) f'(x) dx is equal to

int_(-a)^(a)f(x)dx=0 if f(x) is __________ function.

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx