Home
Class 12
MATHS
int(sin2x)/(2cos^(2)x+3sin^(2)x)dx equal...

`int(sin2x)/(2cos^(2)x+3sin^(2)x)dx` equals

A

`log(2+sinx)+C`

B

`log(2+cos^(2)x)+C`

C

`log(2+sin^(2)x)+C`

D

`log(2+cosx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 2x}{2 \cos^2 x + 3 \sin^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand using the double angle identity We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ \int \frac{2 \sin x \cos x}{2 \cos^2 x + 3 \sin^2 x} \, dx \] ### Step 2: Simplify the denominator Notice that we can express \( 3 \sin^2 x \) in terms of \( \cos^2 x \) and \( \sin^2 x \): \[ 2 \cos^2 x + 3 \sin^2 x = 2 \cos^2 x + 2 \sin^2 x + \sin^2 x = 2(\cos^2 x + \sin^2 x) + \sin^2 x \] Since \( \cos^2 x + \sin^2 x = 1 \), we have: \[ 2 \cos^2 x + 3 \sin^2 x = 2 + \sin^2 x \] ### Step 3: Substitute into the integral Now, we can substitute this back into our integral: \[ \int \frac{2 \sin x \cos x}{2 + \sin^2 x} \, dx \] ### Step 4: Use substitution Let \( t = \sin x \). Then, \( dt = \cos x \, dx \) or \( dx = \frac{dt}{\cos x} \). We also note that \( \cos x = \sqrt{1 - t^2} \). Therefore, the integral becomes: \[ \int \frac{2t \sqrt{1 - t^2}}{2 + t^2} \, dt \] ### Step 5: Simplify the integral Now, we can rewrite the integral as: \[ \int \frac{2t}{2 + t^2} \, dt \] ### Step 6: Use another substitution Let \( u = 2 + t^2 \). Then, \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). The integral becomes: \[ \int \frac{du}{u} \] ### Step 7: Integrate The integral of \( \frac{1}{u} \) is: \[ \log |u| + C \] ### Step 8: Substitute back Substituting back for \( u \): \[ \log |2 + t^2| + C \] And substituting back for \( t \): \[ \log |2 + \sin^2 x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sin 2x}{2 \cos^2 x + 3 \sin^2 x} \, dx = \log(2 + \sin^2 x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(cos2x)dx

int(1+sin2x)/(cos^2x)dx

int(sin2x)/(cos x)*dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

int(sin 2x)/(5-cos^(2) x)dx

Evaluate int(sin2x)/(a^2cos^2x+b^2sin^2x)dx

int(sin2x)/(a^(2)-cos^(2)x)dx

int(2+sin2x)/(1+cos2 x)dx

int(sin2x)/(cos^2x+3cosx+2)dx