Home
Class 12
MATHS
int(2x+3)/((x-1)(x^2+1))dx =loge{(x-1)^(...

`int(2x+3)/((x-1)(x^2+1))dx =log_e{(x-1)^(5/2)(x^2+1)^a-1/2 tan^-1 x+C,x > 1` where `C` is any arbitrary constant, then the value of '`a'` is

A

`(5)/(4)`

B

`-(5)/(3)`

C

`-(5)/(6)`

D

`-(5)/(4)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If int\ x ln(1+1/x)\ dx = p(x)\ ln(1+1/x)+1/2 x - 1/2 ln(1+x) + c, c being arbitarary constant, then

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

If int(dx)/((x+1)^(2)(x^(2)+2x+2))=(A)/(x+1)+B tan^(-1)(x+1)+C, where A and B are constants and C is the constant of integration, then |A-B| is equal to

If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C , then

If int e^(x)(tan^(-1)x+(2x)/((1+x^(2)))^(2))dx=e^(x)(tan^(-1)x+g(x))+c where g(x) is a rational function, c is constant of integration then find the value of 20[g(2)] .

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to: