Home
Class 12
MATHS
If intf(x)dx=g(x)+c and f^(-1)(x) is dif...

If `intf(x)dx=g(x)+c and f^(-1)(x)` is differentiable, then `intf^(-1)(x)dx` equal to

A

`g^(-1)x+C`

B

`xf^(-1)(x)-g(f^(-1)(x))+C`

C

`xf^(-1)(x)-g^(-1)(x)+C`

D

`f^(-1)(x)+C`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (Only one answer)|70 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Objective Type Questions (More than one answer)|32 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

Evaluate: If intf(x)dx=g(x),t h e nintf^(-1)(x)dx

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If intf(x)dx=xcospix+C , then f((1)/(2))=

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If intf(x)= Psi(x)dx+C then intx^(5)f(x^3)dx is equal to

Differentiate (x+1/x)^x

If f(x)a n dg(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that d/(dx){f(x)+-g(x)}=d/(dx){f(x)}+-d/(dx){g(x)}

If f(x) =(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)) ,k=1,2,3,……and g(x)=f^(1998)(x) then int_(1//e)^(1) g(x)dx is equal to

Differentiate wrt x : (e^(x)(x-1))/(x+1)