Home
Class 12
MATHS
STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C...

STATEMENT-1 : `intx^(x)(1+logx)dx=x^(x)+C`
and
STATEMENT-2 : `(d)/(dx)x^(x)=x^(x)(1+logx)`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

d/dx(x^n.logx)

If y+d/(dx)(x y)=x(sinx+logx),find y.

Statement-1: int(sinx)^x(xcotx+logsinx)dx=x(sinx)^x Statement-2: d/dx(f(x))^(g(x))=(f(x))^(g(x))d/dx[g(x)logf(x)] (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

d/dx(x^2+e^x+logx+sinx)

If y+d/(dx)(x y)=x(sinx+logx), y(x)dot ?

Differentiate wrt x : (3e^(x)sinx+a^(x)*logx)

Statement I int 2^(tan^(-1)x)d(cot^(-1)x)=(2^(tan^(-1)x))/(ln 2)+C Statement II (d)/(dx) (a^(x)+C)=a^(x) ln a

If y+d/(dx)(x y)=x(sinx+logx) , find y(x) .

Evaluate: (i) intx^x(1+logx)\ dx (ii) intx^(2x)\ (1+logx)\ dx

Differentiate x^(x) + (sin x)^(logx) w.r.t. x , x gt 0