Home
Class 12
MATHS
STATEMENT-1 : If l(n)=inttan^(n)xdx then...

STATEMENT-1 : If `l_(n)=inttan^(n)xdx` then `9(l_(8)+l_(10))=tan^(9)x`
and
STATEMENT-2 : `l_(n)=inttan^(n)xdx` then `l_(n)=(tan^(n+1)x)/(n+1)+c`, `n ne -1`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Prove that: inttan^n xdx=1/(n-1)tan^(n-1)x-inttan^(n-2)xdx

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

Prove that: inttan^n x\ dx=1/(n-1)tan^("n"-1)x-inttan^(n-2)x\ dx

STATEMENT-1 : If a line making an angle pi//4 with x-axis, pi//4 with y-axis then it must be perpendicular to z-axis and STATEMENT-2 : If direction ratios of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) then the angle between them is given by theta = cos ^(-1)(l_(1)l_(2)+m_(2)m_(2)+n_(1)n_(2))

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

l_(n)=intx^(n)sqrt(a^(2)-x^(2))dx , then answer the following questions: The value of l_(1) is

If the integral l_(n)=int_(0)^(pi//4)tan^(n)xdx is reduced to its lower integrals like l_(n-1),l_(n-2) etc., The value of (l_(3)+2l_(5))/(l_(1)) is