Home
Class 12
MATHS
STATEMENT-1 : If f(x)=int(dx)/(sin^(1//2...

STATEMENT-1 : If `f(x)=int(dx)/(sin^(1//2)xcos^(7//2)x)`, then the value of `f((pi)/(4))-f(0)` is equal to `(12)/(5)`.
and
STATEMENT-2 : To find the `intsin^(m)xcos^(n)xdx` if `m+n=-ve` even, then we can substitute `tanx=t`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsin^2xcos^5x\ dx

int_0^(2pi)sin^(100)xcos^(99)x dx

Evaluate: int1/(sin^4xcos^2x)dx

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

Evaluate: int1/(sin^2xcos^2x)\ dx

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to