Home
Class 12
MATHS
STATEMENT-1 : int(-(pi)/(2))^((pi)/(2))s...

STATEMENT-1 : `int_(-(pi)/(2))^((pi)/(2))sin(log(x+sqrt(1+x^(2))))dx=0`
and
STATEMENT-2 : `int_(-a)^(a)f(x)dx=0` if `f(x)` is an even function

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

STATEMENT-1 : int_(0)^((pi)/(2))(xsinxcosx)/(sin^(4)x+cos^(4)x)dx=(pi^(2))/(32) and STATEMENT-2 : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

STATEMENT 1 : The value of int_(-4)^(-5)sin(x^2-3)dx+int_(-2)^(-1)sin(x^2+12 x+33) is zero. STATEMENT 2 : int_(-a)^af(x)dx=0iff f(x) is an odd function.

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

STATEMENT-1 : int_(0)^(2)[x+[x+[x]]]dx=3 and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

STATEMENT 1: int_0^pixsinxcos^2xdx=pi/2int_0^pisinxcos^2x dx . STATEMENT 2: int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx .

STATEMENT 1: The value of int_0^(2pi)cos^(99)x dx is 0 STATEMENT 2: int_0^(2a)f(x)dx=2int_0^af(x)dx ,if f(2a-x)=f(x)