Home
Class 12
MATHS
STATEMENT-1 : int(-2pi)^(5pi)cot^(-1)(ta...

STATEMENT-1 : `int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2)`
and
STATEMENT-2 : `int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx`, `a lt c lt b`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : int_(0)^((pi)/(2))(xsinxcosx)/(sin^(4)x+cos^(4)x)dx=(pi^(2))/(32) and STATEMENT-2 : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

STATEMENT-1 : int_(0)^(2)[x+[x+[x]]]dx=3 and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

STATEMENT-1 : int_(-(pi)/(2))^((pi)/(2))sin(log(x+sqrt(1+x^(2))))dx=0 and STATEMENT-2 : int_(-a)^(a)f(x)dx=0 if f(x) is an even function

int_(a+c)^(b+c) f(x) dx is equal to

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

int_(0)^(pi//2)(dx)/(1+tanx) is

STATEMENT 1: int_0^pixsinxcos^2xdx=pi/2int_0^pisinxcos^2x dx . STATEMENT 2: int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx .