Home
Class 12
MATHS
STATEMENT-1 : If n in N int(-n)^(n)(-1)^...

STATEMENT-1 : If `n in N int_(-n)^(n)(-1)^([x])dx=2n`
and
STATEMENT-2 : `(-1)^([x])` is odd if `x is odd integer

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If n in N , then int_(-n)^(n)(-1)^([x]) dx equals

int (2x^(n-1))/(x^n+3) dx

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

11. int_(1)^(2)dx/(x.(x^n+1))

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

Show that n^2-1 is divisible by 8, if n is an odd positive integer.