Home
Class 12
MATHS
STATEMENT-1 : int(0)^(2)[x+[x+[x]]]dx=3 ...

STATEMENT-1 : `int_(0)^(2)[x+[x+[x]]]dx=3`
and
STATEMENT-2 : `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

STATEMENT-1 : int_(0)^((pi)/(2))(xsinxcosx)/(sin^(4)x+cos^(4)x)dx=(pi^(2))/(32) and STATEMENT-2 : int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

STATEMENT 1: The value of int_0^(2pi)cos^(99)x dx is 0 STATEMENT 2: int_0^(2a)f(x)dx=2int_0^af(x)dx ,if f(2a-x)=f(x)

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

STATEMENT-1 : int_(-(pi)/(2))^((pi)/(2))sin(log(x+sqrt(1+x^(2))))dx=0 and STATEMENT-2 : int_(-a)^(a)f(x)dx=0 if f(x) is an even function

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .