Home
Class 12
MATHS
Let f be a real-valued function satisfyi...

Let `f` be a real-valued function satisfying `f(x)+f(x+4)=f(x+2)+f(x+6)` Prove that `int_x^(x+8)f(t)dt` is constant function.

A

`1`

B

`2011`

C

`2010`

D

`8`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Subjective Type Questions|15 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R , then

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is equal to

Let f:R ->(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then find f(x) ?

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is